HDU 畅通工程系列题目解题报告
一、题目列表:
1、HDU1232畅通工程
2、HDU1233还是畅通工程
3、HDU1863畅通工程
4、HDU1874畅通工程续
5、HDU1875畅通工程再续
6、HDU1879继续畅通工程
二、主要考点:图论基础(并查集,最小生成树,最短路径)
三、解题报告:
1、HDU1232畅通工程
http://acm.hdu.edu.cn/showproblem.php?pid=1232
该题考点:并查集
并查集基础题,只要求出有几个不连通的集合即可, 建设【独立集合个数-1】条道路 即可将所有不连通集合连通,做到城镇通。
解题算法处理步骤(并查集处理):
(1)先设每个城镇都是独立的,在一个独立的集合里面,根节点是自身;
(2)对每条建立好的道路,将道路两端的两个城镇所在集合合并(城镇连通);
(3)对所有的村庄的根节点进行整理,统一同一集合的根节点;
(4)统计根节点种数(独立集合的个数);
(5)建立建设【独立集合个数-1】条道路,所有城镇即可连通。
AC代码:
2、HDU1233还是畅通工程
http://acm.hdu.edu.cn/showproblem.php?pid=1233
本题考点:并查集,最小生成树(克鲁斯卡尔算法)
最小生成树基础题,直接用克鲁斯卡算法水过。
解题算法处理步骤(克鲁斯卡尔算法):
(1)输入并用结构体存储所有两个村庄间的距离情况(编号较小村庄,编号较大村庄,两村庄间的距离);
(2)对村庄间距离情况进行排序,按距离从小到大的顺序排序;
(3)按距离从小到大对所有两村庄间道路建设情况依次进行处理;
(4)若当前处理的两个村庄在同一集合中,则不作处理;若当前处理的两个村庄在不同集合中,则建立道路,更新要建设的道路总距离;(判断与合并操作用并查集实现)
AC代码:
3、HDU1863畅通工程
http://acm.hdu.edu.cn/showproblem.php?pid=1863
本题考点:并查集,最小生成树( 克鲁斯卡算法)
基本算法解题思路同2、HDU1233还是畅通工程,只是处理依据不是距离而是经费,不过同理可得。最后有个判断能否全部连通的步骤,直接处理并查集集合根节点记录数组,数下一共有多少个根节点。若根节点不止一个,则表示所有村庄不能全部连通,输出“?”,否则,直接输出费用即可。
AC代码:
4、HDU1874畅通工程续
http://acm.hdu.edu.cn/showproblem.php?pid=1874
本题考点:最短路径(迪杰斯特拉算法)
本题为最短路径基础题,直接用迪杰斯特拉算法水过。
解题算法处理步骤:(迪杰斯特拉算法)
(1)初始化地图,map[i][j]记录城镇i,j之间最短的道路的长度,若无道路连通,则赋为极大值;
(2)又起始城镇开始,用广度优先搜索思想,嵌入松弛处理算法,用dis[i]记录起始城镇到城镇i的最短路径的长度;
(3)答案位于dis[t],即终点t城镇到起始城镇的最小距离。
AC代码:
5、HDU1875畅通工程再续
http://acm.hdu.edu.cn/showproblem.php?pid=1875
本题考点:两点间距离计算,并查集,最小生成树(克鲁斯卡尔)
基本算法解题思路同 2、HDU1233还是畅通工程,只是道路情况要自己处理,对所有的岛屿,求出两两之间的距离情况,要是距离小于10或大于1000,则不予处理。否则,存储结构体数组,待处理。
AC代码:
6、HDU1879继续畅通工程
http://acm.hdu.edu.cn/showproblem.php?pid=1879
本题考点:并查集,最小生成树(克鲁斯卡尔算法)
AC代码:
1、HDU1232畅通工程
2、HDU1233还是畅通工程
3、HDU1863畅通工程
4、HDU1874畅通工程续
5、HDU1875畅通工程再续
6、HDU1879继续畅通工程
二、主要考点:图论基础(并查集,最小生成树,最短路径)
三、解题报告:
1、HDU1232畅通工程
http://acm.hdu.edu.cn/showproblem.php?pid=1232
该题考点:并查集
并查集基础题,只要求出有几个不连通的集合即可, 建设【独立集合个数-1】条道路 即可将所有不连通集合连通,做到城镇通。
解题算法处理步骤(并查集处理):
(1)先设每个城镇都是独立的,在一个独立的集合里面,根节点是自身;
(2)对每条建立好的道路,将道路两端的两个城镇所在集合合并(城镇连通);
(3)对所有的村庄的根节点进行整理,统一同一集合的根节点;
(4)统计根节点种数(独立集合的个数);
(5)建立建设【独立集合个数-1】条道路,所有城镇即可连通。
8406272 | 2013-05-29 21:57:31 | Accepted | 1232 | 15MS | 204K | 960 B | G++ | try it |
#include<stdio.h>
#include<string.h>
int town[1002];
int n,m;
int find(int x) //寻找根节点
{
while(x != town[x]) //若x节点为根节点,则有town[x]=x
x = town[x];
return x;
}
void union1(int a,int b) //将a节点所在集合和b节点所在集合合并,根节点相同的集合为同一集合
{
int a_f=find(a),b_f=find(b);
if(a_f!=b_f)
town[b_f]=a_f;
}
int main()
{
int i,j,k;
int a,b;
int sum[1002];
while(scanf("%d",&n)&&n)
{
memset(town,0,sizeof(town[0])*(n+1)); //初始化
memset(sum,0,sizeof(sum[0])*(n+1));
for(i=1;i<=n;i++) //在不知道道路修建情况前,任何城镇都是一个独立的集合
town[i]=i;
scanf("%d",&m);
while(m--)
{
scanf("%d%d",&a,&b);
union1(a,b); //将连通的城镇合并到同一集合
}
for(i=1; i<=n; i++) //将所有的集合整理一下,所有在统一同一集合的根节点
town[i] = find(town[i]);
for(i=1;i<=n;i++) //统计所有的根节点
sum[town[i]]=1;
int x=0;
for(i=1;i<=n;i++) //计算根节点的个数,即不连通集合的个数
x+=sum[i];
printf("%d\n",x-1); //需将所有集合连通,要建【独立集合个数-1】条道路
}
return 0;
}
2、HDU1233还是畅通工程
http://acm.hdu.edu.cn/showproblem.php?pid=1233
本题考点:并查集,最小生成树(克鲁斯卡尔算法)
最小生成树基础题,直接用克鲁斯卡算法水过。
解题算法处理步骤(克鲁斯卡尔算法):
(1)输入并用结构体存储所有两个村庄间的距离情况(编号较小村庄,编号较大村庄,两村庄间的距离);
(2)对村庄间距离情况进行排序,按距离从小到大的顺序排序;
(3)按距离从小到大对所有两村庄间道路建设情况依次进行处理;
(4)若当前处理的两个村庄在同一集合中,则不作处理;若当前处理的两个村庄在不同集合中,则建立道路,更新要建设的道路总距离;(判断与合并操作用并查集实现)
9011977 | 2013-08-20 10:43:51 | Accepted | 1233 | 187MS | 296K | 984 B | C++ | try it |
#include<stdio.h>
#include<algorithm>
using namespace std;
int a[100]; //存储100个节点的根节点
struct node //道路情况
{
int x; //起点
int y; //终点
int dic; //距离
}road[10000];
bool cmp(node a,node b) //按距离从小到大排序
{
return a.dic<b.dic;
}
int father(int x) //寻找x节点的根节点
{
while(x!=a[x])x=a[x];
return x;
}
int main()
{
int n,m;
int i,j;
int sum;
while(scanf("%d",&n)&&n)
{
m=n*(n-1)/2; //道路条数
for(i=0;i<m;i++)
{
scanf("%d%d%d",&road[i].x,&road[i].y,&road[i].dic); //每条道路的情况
if(road[i].x>road[i].y)swap(road[i].x,road[i].y); //要求道路起始于编号较小的村庄
}
sort(road,road+m,cmp); //按道路长度从小到大排序
for(i=0;i<=n;i++)a[i]=i; //处理前,每个村庄都是独立未连通的
j=0;
sum=0;
for(i=0;i<m&&j<n;i++) //遍历每一条道路(按道路长度从小到大顺序)
{
int x_f=father(road[i].x); //找出道路两端的两个村庄所在集合的根节点
int y_f=father(road[i].y);
if(x_f!=y_f) //要是道路两端的两个村庄不在同一集合,则建设这条路,合并两个村庄所在集合
{
sum+=road[i].dic; //建设的道路的总长度增加
j++;
a[y_f]=x_f; //合并集合
}
}
printf("%d\n",sum);
}
return 0;
}
3、HDU1863畅通工程
http://acm.hdu.edu.cn/showproblem.php?pid=1863
本题考点:并查集,最小生成树( 克鲁斯卡算法)
基本算法解题思路同2、HDU1233还是畅通工程,只是处理依据不是距离而是经费,不过同理可得。最后有个判断能否全部连通的步骤,直接处理并查集集合根节点记录数组,数下一共有多少个根节点。若根节点不止一个,则表示所有村庄不能全部连通,输出“?”,否则,直接输出费用即可。
9012674 | 2013-08-20 11:20:34 | Accepted | 1863 | 0MS | 240K | 1019 B | C++ | try it |
#include<stdio.h>
#include<algorithm>
using namespace std;
int a[100];
struct node
{
int x;
int y;
int dic;
}road[10000];
bool cmp(node a,node b)
{
return a.dic<b.dic;
}
int father(int x)
{
while(x!=a[x])x=a[x];
return x;
}
int main()
{
int n,m;
int i,j;
int sum;
while(scanf("%d%d",&m,&n)&&m)
{
for(i=0;i<m;i++)
{
scanf("%d%d%d",&road[i].x,&road[i].y,&road[i].dic);
if(road[i].x>road[i].y)swap(road[i].x,road[i].y);
}
sort(road,road+m,cmp);
for(i=0;i<=n;i++)a[i]=i;
j=0;
sum=0;
for(i=0;i<m;i++)
{
int x_f=father(road[i].x);
int y_f=father(road[i].y);
if(x_f!=y_f)
{
sum+=road[i].dic;
a[y_f]=x_f;
}
}
for(i=1;i<=n;i++)if(a[i]==i)j++;
if(j==1)printf("%d\n",sum);
else printf("?\n");
}
return 0;
}
4、HDU1874畅通工程续
http://acm.hdu.edu.cn/showproblem.php?pid=1874
本题考点:最短路径(迪杰斯特拉算法)
本题为最短路径基础题,直接用迪杰斯特拉算法水过。
解题算法处理步骤:(迪杰斯特拉算法)
(1)初始化地图,map[i][j]记录城镇i,j之间最短的道路的长度,若无道路连通,则赋为极大值;
(2)又起始城镇开始,用广度优先搜索思想,嵌入松弛处理算法,用dis[i]记录起始城镇到城镇i的最短路径的长度;
(3)答案位于dis[t],即终点t城镇到起始城镇的最小距离。
9041047 | 2013-08-23 15:03:37 | Accepted | 1874 | 15MS | 396K | 1097 B | C++ | try it |
#include<stdio.h>
#include<queue>
using namespace std;
int main()
{
int n,m;
int map[200][200]; //map[i][j]记录城镇i到j间最短连通道路长度
int s,t; //记录起始村庄和终点村庄编号
int dis[200]; //dis[i]记录i号村庄到起始村庄的最短的路径长度
int x,y,d;
int i,j;
while(scanf("%d%d",&n,&m)!=EOF)
{
for(i=0;i<n;i++)
for(j=0;j<n;j++)map[i][j]=0xfffffff; //所有路径清理初始化为最大值,便于两城镇间最短的道路的记录更新
while(m--)
{
scanf("%d%d%d",&x,&y,&d);
if(map[x][y]>d)map[x][y]=d,map[y][x]=d; //若当前输入道路信息为城镇x,y间长度最短的道路,则更新地图
}
scanf("%d%d",&s,&t);
queue<int> q;
q.push(s); //起点入队
for(i=0;i<n;i++)dis[i]=0xfffffff; //所有城镇到起始城镇的距离初始化为最大值
dis[s]=0; //起始城镇到其自身的距离为0
while(!q.empty()) //所有与起始城镇连接的城镇都遍历完时,结束遍历
{
x=q.front();
q.pop();
for(i=0;i<n;i++)
{
if(map[x][i]!=0xfffffff)
{
if(dis[i]>dis[x]+map[x][i]) // 从城镇x到城镇i的路径(到起始城镇)较短
{
dis[i]=dis[x]+map[x][i]; //更新i城镇到起始城镇的最短距离
q.push(i);
}
}
}
}
if(dis[t]==0xfffffff)printf("-1\n"); //若起始城镇无法到达终点城镇,输出-1
else printf("%d\n",dis[t]);
}
return 0;
}
5、HDU1875畅通工程再续
http://acm.hdu.edu.cn/showproblem.php?pid=1875
本题考点:两点间距离计算,并查集,最小生成树(克鲁斯卡尔)
基本算法解题思路同 2、HDU1233还是畅通工程,只是道路情况要自己处理,对所有的岛屿,求出两两之间的距离情况,要是距离小于10或大于1000,则不予处理。否则,存储结构体数组,待处理。
9043723 | 2013-08-23 20:31:22 | Accepted | 1875 | 171MS | 300K | 1346 B | G++ | try it |
#include<stdio.h>
#include<math.h>
#include<algorithm>
using namespace std;
struct node
{
int x;
int y;
double d;
}road[10000];
int is[102];
bool cmp(node a,node b)
{
return a.d<b.d;
}
int find(int x)
{
while(is[x]!=x)x=is[x];
return x;
}
int main()
{
int n,m,t;
int x[102],y[102];
double dis,sum;
int i,j;
scanf("%d",&t);
while(t--)
{
m=0;
sum=0;
scanf("%d",&n);
for(i=0;i<n;i++)scanf("%d%d",&x[i],&y[i]);
for(i=0;i<n;i++)
for(j=i+1;j<n;j++)
{
dis=sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
if(dis>=10&&dis<=1000)
{
road[m].x=i;
road[m].y=j;
road[m].d=dis;
m++;
}
}
for(i=0;i<n;i++)is[i]=i;
sort(road,road+m,cmp);
for(i=0;i<m;i++)
{
int x_f=find(road[i].x);
int y_f=find(road[i].y);
if(x_f!=y_f)
{
is[y_f]=x_f;
sum+=road[i].d;
}
}
sum*=100;
j=0;
for(i=0;i<n;i++)
if(is[i]==i)j++;
if(j==1)printf("%.1lf\n",sum);
else printf("oh!\n");
}
return 0;
}
6、HDU1879继续畅通工程
http://acm.hdu.edu.cn/showproblem.php?pid=1879
本题考点:并查集,最小生成树(克鲁斯卡尔算法)
9041360 | 2013-08-23 15:33:18 | Accepted | 1879 | 375MS | 296K | 1014 B | C++ | try it |
#include<stdio.h>
#include<algorithm>
using namespace std;
struct node
{
int x;
int y;
int d;
}road[10000];
int cont[102];
bool cmp(node a,node b)
{
return a.d<b.d;
}
int find(int x)
{
while(x!=cont[x])x=cont[x];
return x;
}
int main()
{
int n,m;
int sum,v;
int i,j;
while(scanf("%d",&n)&&n)
{
m=n*(n-1)/2;
j=0;
for(i=0;i<=n;i++)cont[i]=i;
while(m--)
{
scanf("%d%d%d%d",&road[j].x,&road[j].y,&road[j].d,&v);
if(road[i].x>road[i].y)swap(road[i].x,road[i].y);
if(v)cont[find(road[j].y)]=find(road[j].x);
else j++;
}
sort(road,road+j,cmp);
for(i=n;i>=1;i--)cont[i]=find(i);
sum=0;
for(i=0;i<j;i++)
{
int x_f=find(road[i].x);
int y_f=find(road[i].y);
if(x_f!=y_f)cont[y_f]=x_f,sum+=road[i].d;
}
printf("%d\n",sum);
}
return 0;
}