12-Dec-2009

转来一篇有用的文章:

 

Readings in computer vision

 

By Martin A. Fishchler, Oscar Firschein 1987

1.    Introduction

Image analysis: problems, progress, and prospects

Azriel Rosenfeld

2.    Recovering scene geometry

A stochastic approach to stereo vision

Stephen T. Barnard

          

Epipolar-plane image analysis: a technique for analyzing motion sequences

Robert C. Bolles, H. Harlyn Baker

          

Preface—the changing shape of computer vision

Michael Brady

          

Understanding image intensities

Berthold K. P. Horn

          

A computer algorithm for reconstructing a scene from two projections

H. C. Longuet-Higgins

          

Practical real-time imaging stereo matcher

H. K. Nishihara

          

Detection of binocular disparities

Kvetoslav Prazdny

          

Hierarchical warp stereo

Lynn H. Quam

          

Stereo integral equation

Grahame B. Smith

          

Recovering the camera parameters from a transformation matrix

Thomas M. Strat

          

One-eyed stereo: a general approach to modeling 3-D scene geometry

Thomas M. Strat, Martin Fischler

          

An algebraic approach to shape-from-image problems

Kokichi Sugihara

          

Analysis of visual motion by biological and computer systems

Shimon Ullman

          

An image flow paradigm

Allen M. Waxman

3.    Image partitioning and perceptual organization

Extracting straight lines

J. Brian Burns, Allen R. Hanson, Edward M. Riseman

          

A computational approach to edge detection

J. F. Canny

          

Linear delineation

Martin A. Fischler, Helen C. Wolf

          

Perceptual organization and curve partitioning

Martin A. Fischler, Robert C. Bolles

          

Digital stereo edges from zero crossing of second directional derivatives

Robert M. Haralick

          

Parts of recognition

D. D. Hoffman, W. A. Richards

          

Textons, the fundamental elements in preattentive vision and perception of textures

B. Julesz, J. R. Bergen

          

Mapping image properties into shape constraints: skewed symmetry, affine-transformable patterns, and the shape-from-texture paradigm

Takeo Kanade, John R. Kender

          

Capturing the local structure of image discontinuities in two dimensions

Yvan Leclerc

          

Segmentation and aggregation: an approach to figure-ground phenomena

David G. Lowe, Thomas O. Binford

          

Color constancy: a method for recovering surface spectral reflectance

Laurence T. Maloney, Brian A. Wandell

          

Scale-space filtering

Andrew P. Witkin

        

Early orientation selection: tangent fields and the dimensionality of their support

Steven W. Zucker

4.    Recognition and Labeling of Scene Objects

3DPO: a three-dimensional part orientation system

Robert C. Bolles, Patrice Horaud, Marsha Jo Hannah

          

Model-based three-dimensional interpretations of two-dimensional images

Rodney A. Brooks

          

Special purpose automatic programming for 3D model-based vision

Chris Goad

          

Model-based recognition and localization from sparse range or tactile data

W. Eric, L. Grimson, Tomas Lozano-Perez

          

Rule-based interpretation of aerial imagery

David M. McKeown, Jr., Wilson A. Harvey, Jr., John McDermott

5.    Relational description

Visual map making for a mobile robot

Rodney A. Brooks

          

A heuristic program to solve geometric-analogy problems

Thomas G. Evans

          

Problem-solving with diagrammatic representations

Brian V. Funt

          

The 3D MOSAIC scene understanding system: incremental reconstruction of 3D scenes for complex images

Martin Herman, Takeo Kanade

          

Terrain models for an autonomous land vehicle

Daryl T. Lawton, Tod S. Levitt, Chris McConnell, Jay Glicksman

          

Experiments in using a theorem prover to prove and develop geometrical theorems in computer vision

Michael J. Swain, Joseph L. Mundy

          

Knowledge organization and its role in representation and interpretation for time-varying data: the ALVEN system

John K. Tsotsos

6.    Vision system architectures and computational paradigms

 

A learning algorithm for Boltzmann machines

David H. Ackley, Geoffrey E. Hinton, Terrence J. Sejnowski

          

Parameter nets

Dana H. Ballard

          

Image processing by simulated annealing

P. Carnevali, L. Coletti, S. Patarnello

          

Preface to S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images”

G. B. Smith

          

Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images

Stuart Geman, Donald Geman

          

On the foundations of relaxation labeling processes

R. A. Hummel, S. W. Zucker

          

Optimization by simulated annealing

S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi

          

Visual information processing: artificial intelligence and the sensorium of sight

David Marr, H. Keith Nishihara

          

Computational vision and regularization theory

Tomaso Poggio, Vincent Torre, Christof Koch

7.    Representations and transformations

Geometry for construction and display

D. V. Ahuja, S. A. Coons

          

Global and local deformations of solid primitives

Alan H. Barr

          

The Laplacian pyramid as a compact image code

Peter J. Burt, Edward H. Adelson

          

Perceptual organization and the representation of natural form

Alex P. Pentland

 

Codon Constraints on Closed 2D shapes

          Whitman Richards and Donald D. Hoffman

8.    Matching, model fitting, deduction, and information integration

Generalizing the hough transform to detect arbitrary shapes

D. H. Ballard

          

Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography

Martin A. Fischler, Robert C. Bolles

          

Detection of roads and linear structures in low-resolution aerial imagery using a multisource knowledge integration technique

M. A. Fischler, J. M. Tenenbaum, H. C. Wolf

          

Representations based on zero-crossings in scale-space

Robert A. Hummel

          

Signal matching through scale space

Andrew Witkin, Demetri Terzopoulis, Michael Kass

          

Parallel computer architectures for computer vision

Glossary

 

 

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值