AI
文章平均质量分 50
HuanCaoO
这个作者很懒,什么都没留下…
展开
-
【自用】记录anaconda安装过程
前言一直以来都是使用的virtualenv和virtualenvwrapper来管理Python虚拟环境,个人觉得非常好使。今天换个口味,安装一次anaconda,记录如下。下载前往清华大学开源软件镜像站(https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/)下载anaconda的安装包。因为我的系统为Ubuntu,所以我这里选择的是Anaconda3-5.3.1-Linux-x86_64.sh。wget https://mirrors.tun原创 2020-12-23 17:02:26 · 384 阅读 · 2 评论 -
使用PyTorch为Tensor指定上下左右padding的行/列数目
先import相关库import torchimport torch.nn as nnimport torch.nn.functional as F第一种情况:当想要对Tensor上下和左右padding的数量不一样时例如,想要对Tensor左右padding各一列,而上下padding各两行,有以下三种方式。将padding数量作为创建padding后所要执行的函数(如卷积)对象的输入参数:conv = nn.Conv2d(in_channels=3, out_channels=3,原创 2020-12-23 11:07:28 · 6314 阅读 · 5 评论 -
【论文阅读/翻译笔记】Deep Snake for Real-Time Instance Segmentation
用于实时实例分割的deep snake算法Sida Peng1,Wen Jiang1,Huaijin Pi1,Xiuli Li2,Hujun Bao2,Xiaowei Zhou1*1Zhejiang University,2Deepwise AI Lab摘要 本文提出了一种基于轮廓的实时实例分割方法——deep snake。与最近一些直接从图像回归目标边界点坐标的方法不同,deep snake使用神经网络迭代变形最初的轮廓以匹配目原创 2020-09-02 19:46:27 · 1953 阅读 · 2 评论 -
极大似然估计(MLE)与最大后验概率(MAP)的公式推导与联系
符号定义令 ω\omegaω 为需要求解的模型参数集合,D={D1,D2,⋯ ,Dn}D = \{ D_1, D_2, \cdots, D_n \}D={D1,D2,⋯,Dn} 为训练样本集合。极大似然估计(MLE)极大似然估计可认为是求解以下公式:mle=argmaxp(ω∣D)=argmaxp(ω∣{D1,D2,⋯ ,Dn})=argmax∏i=1np(ω∣Di)=argmax∑i=1nlogp(ω∣Di)\begin{aligned}mle &= \arg\原创 2020-09-01 11:00:59 · 2358 阅读 · 2 评论 -
celebA数据集的mean和std计算结果
celebA数据集的mean和std计算结果mean: (0.50612009, 0.42543493, 0.38282761)std: (0.26589054, 0.24521921, 0.24127836)另附计算代码import numpy as npimport cv2import ospath = './img_align_celeba'means = [0, 0, 0]stdevs = [0, 0, 0]index = 1num_imgs = 0img_names原创 2020-06-26 00:57:44 · 773 阅读 · 0 评论