- 博客(10)
- 收藏
- 关注
原创 MySQL之子查询
概述:子查询指在一个SELECT语句中嵌套了另外的SELECT语句。一般将位于内部的查询称为子查询,外部的查询称为外部查询,需要注意的是,子查询必须被括号包围。通常来看,使用子查询可带来如下好处:(1)可实现结构化的查询,这样可以把一个查询语句的每个部分分开(2)子查询提供了另外一种实现负责查询的方法,在某些场合下,可替代JOIN和UNION操作(3)一个重要的特点是,子查询的可读性非
2016-08-23 22:19:23 484
原创 MySQL之连接查询
连接查询是数据库使用中最常见的操作之一,用于在两张表(或多张表)之间进行匹配操作。在MySQL中提供了对连接操作的支持,包括的功能主要有交叉连接(CROSS JOIN)、内连接(INNER JOIN)和外连接(OUTER INNER)。本文中将对MySQL中支持的这三种连接查询做简单介绍。一、CROSS JOINCROSS JOIN 为交叉连接,是对两个表执行笛卡尔积操作,返回的结
2016-08-09 21:13:03 430
原创 MySQL之游标
在数据库中,游标是一个十分重要的概念。游标提供了一种对从表中检索出的数据进行操作的灵活手段,就本质而言,游标实际上是一种能从包括多条数据记录的结果集中每次提取一条记录的机制。
2016-08-04 20:09:05 2415
原创 MySQL之Replication
MySQL复制是MySQL提供的一个重要功能,通过它可以将一个MySQL Server的Instance中的数据完整复制到另一个MySQL server 的Instance中。虽然复制过程并不是实时而是异步进行的,但是由于良好的设计,延迟比较小。该功能在实际应用中,常用来保证系统数据的安全性和系统的可扩展性。
2016-07-28 21:40:31 516
原创 MySQL之逻辑查询处理流程
对于数据库的学习前前后后已经持续了很多年,期间主要集中在对于MySQL的学习,也穿插着做过几个与MySQL相关的项目。关于数据库的理论部分,离开书本一段时间就忘得差不多了,趁最近准备找工作,复习一下相关的理论知识。本文主要介绍MySQL的逻辑查询处理流程,基于《MySQL 技术内幕-SQL编程》,该书对SQL编程做了非常详细的介绍,其中第三章讲解了MySQL中如何对查询进行处理。
2016-07-28 21:11:31 1567
原创 64位系统下VS2013中PCL1.7.2的配置
PCL包含了众多点云处理的方法,最近一个项目正好需要进行这方面数据的处理,选定的平台为VS2013,因此在此记录下PCL1.7.2的配置步骤。操作系统版本:windows 10 64位VS版本:Visual Studio Community 2013 PCL:PCL-1.7.2-AllInOne-msvc2013-win64配置步骤:(1)安装VS2013(2)安装PCL
2016-07-22 21:02:25 3030 1
原创 基于改进形态学滤波的点云分类算法------续
在前一篇博客中《基于改进形态学滤波器的点云分类算法》中,介绍了论文中利用改进的形态学方法对点云进行分类的步骤,这几天也将该算法在C++中进行了实现,所以今天将实现过程写在本文中。
2016-07-18 08:54:14 4420 11
原创 基于改进形态学滤波器的点云分类算法
故事背景和目的:在进行机载LiDAR数据处理的时候,需要将激光雷达采集的点云数据进行分类,分离出地面点云以及地物点云。基于地面点云,再经过一定的处理,可生成DEM(数字高程模型),通过DEM能详细掌握区域内的地形地貌,是目前测绘领域广泛采用的方法。生成DEM的关键是有从原始点云中分类产生的地面点,分类结果对后面的处理至关重要。
2016-07-09 19:42:02 8098 6
原创 放置图片拼接结果的图像大小设置方法
在上一篇文章《解决透视变换后图片信息丢失的问题》中说明了在进行图片拼接时,如何解决透视变换造成图像中某些坐标为负值的情况,主要思路是在计算好的变换矩阵H中,加上在X或Y方向上的平移,使变换后的图片像素坐标全部为正。经过这样的处理,虽然解决了上述问题,但同时也引入了另外一个问题。因为透视变换矩阵是将图2变换到图1的途径,该变换是在图1的基础上进行,图1无需做任何变化,在变换后的图中,只需将图1的le
2016-07-03 14:31:00 2653 1
原创 解决透视变换后图片信息丢失的问题
最近在做图像拼接,思路是首先对输入的两幅图进行特征提取,提取的方法使用的是经典的SIFT(Scale-invariant feature transform)算法;然后进行特征匹配,匹配的思路是将一幅图中的特征点以K-D树的形式进行存储,再遍历另一幅图的所有特征点,在这颗K-D树中寻找与之匹配的特征点;匹配依据为最临近点与次临近点欧氏距离的比值,该比值人为设定,越小,匹配精度越高,相应的匹配点数目
2016-06-23 10:03:42 6980 18
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人