9715 相邻最大矩形面积

这个问题可以使用单调栈的数据结构来解决。单调栈可以帮助我们找到每个矩形左边和右边第一个比它低的矩形,然后我们可以计算以每个矩形为高的最大矩形的面积,最后取最大值。

以下是解决这个问题的C++代码:

#include <iostream>
#include <stack>
#include <vector>

using namespace std;

int largestRectangleArea(vector<int>& heights) {
    int n = heights.size();
    vector<int> left(n), right(n);

    stack<int> mono_stack;
    for (int i = 0; i < n; ++i) {
        while (!mono_stack.empty() && heights[mono_stack.top()] >= heights[i]) {
            mono_stack.pop();
        }
        left[i] = (mono_stack.empty() ? -1 : mono_stack.top());
        mono_stack.push(i);
    }

    mono_stack = stack<int>();
    for (int i = n - 1; i >= 0; --i) {
        while (!mono_stack.empty() && heights[mono_stack.top()] >= heights[i]) {
            mono_stack.pop();
        }
        right[i] = (mono_stack.empty() ? n : mono_stack.top());
        mono_stack.push(i);
    }

    int ans = 0;
    for (int i = 0; i < n; ++i) {
        ans = max(ans, (right[i] - left[i] - 1) * heights[i]);
    }
    return ans;
}

int main() {
    int n;
    cin >> n;
    vector<int> heights(n);
    for (int i = 0; i < n; ++i) {
        cin >> heights[i];
    }
    cout << largestRectangleArea(heights) << endl;
    return 0;
}

这段代码首先从输入读取矩形的高度,然后使用函数`largestRectangleArea`计算最大矩形的面积,并将结果打印到输出。函数`largestRectangleArea`使用一个单调栈来找到每个矩形左边和右边第一个比它低的矩形,然后计算以每个矩形为高的最大矩形的面积,最后取最大值。这个算法的时间复杂性是O(n),其中n是矩形的数量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值