这个问题可以使用单调栈的数据结构来解决。单调栈可以帮助我们找到每个矩形左边和右边第一个比它低的矩形,然后我们可以计算以每个矩形为高的最大矩形的面积,最后取最大值。
以下是解决这个问题的C++代码:
#include <iostream>
#include <stack>
#include <vector>
using namespace std;
int largestRectangleArea(vector<int>& heights) {
int n = heights.size();
vector<int> left(n), right(n);
stack<int> mono_stack;
for (int i = 0; i < n; ++i) {
while (!mono_stack.empty() && heights[mono_stack.top()] >= heights[i]) {
mono_stack.pop();
}
left[i] = (mono_stack.empty() ? -1 : mono_stack.top());
mono_stack.push(i);
}
mono_stack = stack<int>();
for (int i = n - 1; i >= 0; --i) {
while (!mono_stack.empty() && heights[mono_stack.top()] >= heights[i]) {
mono_stack.pop();
}
right[i] = (mono_stack.empty() ? n : mono_stack.top());
mono_stack.push(i);
}
int ans = 0;
for (int i = 0; i < n; ++i) {
ans = max(ans, (right[i] - left[i] - 1) * heights[i]);
}
return ans;
}
int main() {
int n;
cin >> n;
vector<int> heights(n);
for (int i = 0; i < n; ++i) {
cin >> heights[i];
}
cout << largestRectangleArea(heights) << endl;
return 0;
}
这段代码首先从输入读取矩形的高度,然后使用函数`largestRectangleArea`计算最大矩形的面积,并将结果打印到输出。函数`largestRectangleArea`使用一个单调栈来找到每个矩形左边和右边第一个比它低的矩形,然后计算以每个矩形为高的最大矩形的面积,最后取最大值。这个算法的时间复杂性是O(n),其中n是矩形的数量。