归并排序

递归的佛系理解:
事实上,我们并不是每个函数都需要跟进去看执行结果的,比如我们在自己的函数中调用printf函数时,并没有钻进去看它是怎么打印的,因为我们相信它能完成打印工作。

如果你相信你正在写的递归函数是正确的,并调用它,然后在此基础上写完这个递归函数,那么它就会是正确的,从而值得你相信它正确。

以上两句话就是要明白一个道理:不要把自己放进递归函数中,放进一些简单的递归如阶乘,可能你还能理解,但是换个求全排列这样复杂点的递归函数你可能就懵逼了。
你要站在一个上帝视角去看待问题,就像走迷宫,你不知道正确的路线就往里面走,那么你一定会迷路的,但是如果我站在高处的地方把正确的路线找到了,
那我走迷宫的时候就不会迷路了。所以不要主观的看待,客观的把它当做一个人,你交给他的任务他一定能够完成的,你也千万别替他安排任务该如何去完成

 

归并排序

采用分治法的一个非常典型的应用。(分治法--->将一个大问题分成很多个小问题进行解决,最后重新组合起来;------》针对排序杂乱无章的数组)
即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

归并排序的时间复杂度,在最坏,最好和平均都是O(nlogn),这是效率,性能非常好的排序算法。
只不过它需要占用 O(n)的内存空间,如果数据量一旦很大,内存可能吃不消,这是它的弱点和致命伤。
而其他排序算法,比如快速排序,希尔排序,都是就地排序算法(不随程序规模增大,而增加空间资源),它们不占用额外的内存空间。
不过,这个占用内存的弱点,可以改进为就地排序(场景:MR的shuffle,内存中利用了快速排序,外部文件中利用了归并排序)

归并操作的工作原理如下:
    第一步:申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
    第二步:设定两个指针,最初位置分别为两个已经排序序列的起始位置
    第三步:比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
    重复步骤3直到某一指针超出序列尾
    将另一序列剩下的所有元素直接复制到合并序列尾

总结:
将两个已排好序的数组合并成一个有序的数组,称之为归并排序
步骤:遍历两个数组,比较它们的值。谁比较小,谁先放入大数组中,直到数组遍历完成


代码实现:
1)递归拆分
2)合并
   a.遍历两个数组,比较它们的值。谁比较小,谁先放入大数组中,直到数组遍历完成
   b.将左右两边剩余元素合并
   c.将temp中的元素全部拷贝到原数组中
   

java版:
public class MergeSort {
    public static void main(String[] args) {
        int[] arr= {9, 22, 5, 1, 3, 27};

        int[] temp = new int[arr.length];// 在排序前,先建好一个长度等于原数组长度的临时数组,避免递归中频繁开辟空间
        sort(arr, 0, arr.length - 1, temp);

        for(int ele: arr){
            System.out.println(ele);
        }
    }


    private static void sort(int[] arr, int left, int right, int[] temp) {
        if (left < right) {
            int mid = (left + right) / 2;
            sort(arr, left, mid, temp);// 左边归并排序,使得左子序列有序
            sort(arr, mid + 1, right, temp);// 右边归并排序,使得右子序列有序
            merge(arr, left, mid, right, temp);// 将两个有序子数组合并操作
        }
    }

    private static void merge(int[] arr, int left, int mid, int right, int[] temp) {
        int i = left;// 左序列指针left到mid
        int j = mid + 1;// 右序列指针mid+1到right
        int t = 0;// 临时数组指针
        while (i <= mid && j <= right) {//合并
            if (arr[i] <= arr[j]) {
                temp[t++] = arr[i++];
            } else {
                temp[t++] = arr[j++];
            }
        }
        while (i <= mid) {// 将左边剩余元素填充进temp中
            temp[t++] = arr[i++];
        }
        while (j <= right) {// 将右序列剩余元素填充进temp中
            temp[t++] = arr[j++];
        }
        t = 0;
        // 将temp中的元素全部拷贝到原数组中
        while (left <= right) {
            arr[left++] = temp[t++];
        }
    }
}

 

--------

scala版:

/**
 * 代码实现:
 * 1)递归拆分
 * 2)合并
 *    a.遍历两个数组,比较它们的值。谁比较小,谁先放入大数组中,直到数组遍历完成
 *    b.将左右两边剩余元素合并
 *    c.将temp中的元素全部拷贝到原数组中
 */
object MergeSort {

  def main(args: Array[String]): Unit = {
    //对象不可变的是地址,内容可变;
    val array = Array(3, 44, 5, 66, 8, 0, 2, 4)

    //定义数组长度
    val temp = new Array[Int](array.length)

    mergeSort(array, 0, array.length - 1, temp)

    //归并后再次遍历原来的数组array
    for (arr <- array) {
      println(arr)
    }

  }


  def mergeSort(arrayData: Array[Int], left: Int, right: Int, temp: Array[Int]): Unit = {
    if (left < right) {
      val mid = (left + right) / 2
      //递归拆分
      mergeSort(arrayData, left, mid, temp)
      mergeSort(arrayData, mid + 1, right, temp)

      //合并
      merge(arrayData, left, mid, right, temp)
    }
  }


  def merge(array: Array[Int], left: Int, mid: Int, right: Int, temp: Array[Int]) = {
    var i = left
    var j = mid + 1
    var t = 0

    //a.遍历两个数组,比较它们的值。谁比较小,谁先放入大数组中,直到数组遍历完成
    while (i <= mid && j <= right) {
      if (array(i) <= array(j)) {
        temp(t) = array(i)
        t = t + 1
        i = i + 1
      } else {
        temp(t) = array(j)
        t = t + 1
        j = j + 1
      }
    }

    //b.将左两边剩余元素合并
    while (i <= mid) {
      temp(t) = array(i)
      t = t + 1
      i = i + 1
    }

    //将右两边剩余元素合并
    while (j <= right) {
      temp(t) = array(j)
      t = t + 1
      j = j + 1
    }

    // c.将temp中的元素全部拷贝到原数组中
    t = 0
    var start = left //当前批次的array的起始位置
    while (start <= right) {
      array(start) = temp(t)
      t = t + 1
      start = start + 1
    }

  }


}

 

----------------------------------------------------------

二、归并排序:

想:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列

1.两路归并排序算法思路 

①把 n 个记录看成 n 个长度为1的有序子表

②进行两两归并使记录关键字有序,得到 n/2 个长度为 2 的有序子表

 

 

 ③重复第②步直到所有记录归并成一个长度为 n 的有序表为止

 

直白的所就是分为两个步骤

现将数组中的元素拆分成一个一个的子集,使用合并将子集变成有序

拆分是很简单的操作,每次都按照原有的数组元素进行一半拆分 开始元素的位置+最后一个元素的位置/2

如何将将二个有序数列合并。只要从比较二个数列的第一个数,谁小就先取谁,取了后就在对应数列中删除这个数。然后再进行比较,如果有数列为空,那直接将另一个数列的数据依次取出即可。 

总体思路

归并排序的算法我们通常用递归实现。 
先把待排序区间 [s,t] 以中点二分; 
接着把左边子区间排序; 
再把右边子区间排序; 
最后把左区间和右区间用一次归并操作合并成有序的区间 [s,t] 。

 

import java.util.Arrays;

 

public class MergeSort {

public static void main(String[] args) {

  int[] array = new int[10];

        for(int i = 0;i<array.length;i++){

         array[i] = (int)(Math.random()*100);

        }

    System.out.println(Arrays.toString(array));  

mergeSort(array, 0, array.length - 1);

 System.out.println(Arrays.toString(array));

}

 

public static void mergeSort(int[] array, int left, int right) {

if (left < right) {

int center = (left + right) / 2;

// 将数组拆分为两份,并递归拆分子数组,直到数组中只有一个元素

mergeSort(array, left, center);

mergeSort(array, center + 1, right);

// 合并相邻数组

merge(array, left, center, right);

 

}

}

 

// 合并子数组的函数

public static void merge(int[] array, int left, int center, int right) {

// 临时数组,用于排序

int[] tempArray = new int[array.length];

// 用于将排好序的临时数组复制回原数组

int mark = left;

// 第二个数组的左端

int mid = center + 1;

// 用于临时数组的下标

int tempLeft = left;

while (left <= center && mid <= right) {

// 从两个子数组中取出最小的放入临时数组,即按从小到大的顺序重新排布

if (array[left] <= array[mid]) {

tempArray[tempLeft++] = array[left++];

} else {

tempArray[tempLeft++] = array[mid++];

}

}

// 剩余部分依次放入临时数组

while (left <= center) {

tempArray[tempLeft++] = array[left++];

}

while (mid <= right) {

tempArray[tempLeft++] = array[mid++];

}

// 将中间数组中的内容复制回原数组

while (mark <= right) {

array[mark] = tempArray[mark++];

}

}

}

 

 

 

归并排序的时间复杂度为O(nlogn) ,因为递归每次按照一半分区,并且merge需要线性时间。最重要的是该算法中最好、最坏和平均的时间性能都是O(nlogn)。

归并排序的空间复杂度为O(n),会占用内存。

总之,归并排序虽然比较占用内存,但却是一种效率高且稳定的算法。

 

6 总结

归并排序的时间复杂度,在最坏,最好和平均都是O(nlogn),这是效率,性能非常好的排序算法。

只不过它需要占用 O(n)的内存空间,如果数据量一旦很大,内存可能吃不消,这是它的弱点和致命伤。而其他排序算法,比如快速排序,希尔排序,都是就地排序算法,它们不占用额外的内存空间。

不过,这个占用内存的弱点,可以改进为就地排序场景:MR的shuffle,内存中利用了快速排序,外部文件中利用了归并排序

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值