OpenAI摊牌了。不再掩藏锋芒,拿年初预测的2亿美元收入做挡箭牌,“我们的年营收达到了13亿美元。”10月中旬Sam Altman终于透露出来。13亿美元,同比增长4500%。国内。资本和公众的视线越来越多地放在局势变幻、芯片和造车上。
△三季度融资行业龙虎榜,大模型暂时滑落榜下
来源:IT桔子,2023年三季度中国新经济创业投资数据分析报告他们说,OpenAI全球独大,国产大模型的风吹散了。
一、 变革的秩序****历史的范式是不会改变的,引领者被复制,在攻防中优势抹平,竞争格局向右滑动。 十多年前,手机的市场是诺基亚和山寨机的。
△这就是十几年前中国的手机市场
“四五年前手机行业谁用国产机啊,国产机等于山寨机。不是仅手机行业,是几乎所有行业都有这样的困难,他们不仅仅是手机,家里电视也都是索尼三星夏普。”——雷军,2017年2010年,艳惊四座的iPhone4发布,用了2年时间,苹果坐稳了头把交椅。而到了2017年,华米OV作为跟随者各吃到了一块份额,国内苹果三星+华米OV的格局已经稳定下来。历史的范式几乎没有变过。引领者在最早的时候,作为开创者出现,竞争对手想不到、也跟不上,很难打破壁垒。但在行业的扩张期,市场足够大,新入者也能吃足红利,足以见缝插针,把握生存时间和空间。引领者被复制,在攻防中优势相对地衰减,如果不推出新的别人想不到、跟不上的颠覆式产品,竞争格局就会无情地向右滑动。
△市场规模和格局的自然变动 | 理论模型
向右滑动,则整个市场变大,但引领者让出部分份额大模型在技术性能层的竞争,已经悄然开始了向右滑动。 模型间性能追平的速度在加快,Google的PaLM2宣布,其部分结果超过了OpenAI的GPT-4,另有消息透露,Sam Altman有可能不得不抢发全新多模态大模型Gobi,以应对Google计划推出的多模态模型Gemini。国产大模型扮演的跟随者角色,也有大块的生产发展空间。性能之外,大模型接下来,是垂类应用的机会。 垂类应用的竞争才刚刚开局。垂类应用是仔细考虑过落地的,把前后链路纳入产品,因此对客户的效果大于单一接口式服务,具有长期潜力。 应用层也给了国产大模型一个弯道超车的机遇,就像造就了移动互联网时代的主角是iPhone,但将移动支付、短视频浪潮普及到全球的,却是中国企业。而在这一场有秩序的变革里,应该迅速做出反应,迅速适应。一个企业错失时代变革,从行业标杆到死亡,半年到一年就足够了。而对于个人来讲,大模型的风也刚刚吹到我们面前,你会选择把握、掌控还是踌躇、最后再妥协?
△汽车时代的马车夫
今日的世界是变化的世界,最大的危险不是动荡本身,而是仍然沿用过去的思维做事
二、若能掌控,谁会妥协?
曾读到过一份智联招聘的报告:“2019年,白领每周加班平均时长为3-20小时,最惨的加班人每周超过20小时。”我们没有更新的数据,无从对比现在和当年,但近年来网络上越来越多的反内卷、反CPU的声音开始响起,这表明加班、尤其是加自己不想加的班,并没有减轻的迹象。但是,太多人没有退路,没有余地。当年罗永浩的一个对话片段很有意思。提到“外界都说锤子M1背后是罗永浩的妥协,你认同吗”,他表示,“媒体喜欢说我妥协,因为从新闻的角度有故事性,满足了一些心理需求。跟媒体沟通经常有四五家同时问妥协的问题,我说话就带了点脾气,就被标题党搞了很多次。后来他们说妥协,我就说对对对你看得很准。不管是迎合公众的需求,还是在产品追求和商业之间做一个平衡,最终我们是要引导大家对一个好产品的理解。但是如果现在大家愿意说是妥协的,没关系。”也好笑,也无奈。若能掌控,谁会妥协?
当人们感到自己足够掌控情况时,会释放出内啡肽等神经递质,从而产生愉悦感和放松感。相反,当人们感到无法掌控时,则会产生焦虑、压力等负面情绪,并抑制快乐递质的释放。
而在工作中,项目能筹措来的人力精力不够,拖进度会让人失去掌控感;事情碎片化飞来,记不住安排会让人失去掌控感;看不清关键大局,只知细节会让人失去掌控感;抓不住对方想要的关键,总是无效沟通会让人失去掌控感;穿透不了信息的魅惑,摸不准干成事情的法门会让人失去掌控感。现在,“职场三大件儿”——笔记本,手机,平板,足够我们做报告材料、做多媒体文件,也足够我们画出甘特图、BI看板、PERT图上一个个小点——但有时,偶尔EMO的时候,仿佛我们自己也变成了那些二进制的数据点。
“职场三大件儿”,是我们的生产工具,好比手艺人的织布机,它不会是侠客的刀,也不会是少年人踏过红尘的马——它不会直接带来工作中的掌控感, 哪怕把一些大模型的生成式功能,下放到电脑软件里,变成copilot。那大模型到底应该用怎样的方式,带来改变?
上面的那些问题,其实讲的是做执行产出的效能不够,以及无法透过信息、洞察脉络来看清关键,所带来的困扰。要解这道题,就要穿透信息迷障,将关键掌握在手。
国产大模型第一梯队的科大讯飞,旗下的四小样办公搭子(智能办公本 | 智能录音笔 | 翻译机 | 讯飞写作)内置了讯飞星火大模型之后,更新了一系列能力:把冗余的话自动规整,自动提炼要点;基于转写内容、手写重点,直接产出会议纪要;会议时随手圈出待办,自动汇集到日程安排;通过与AI对话,指挥AI编写内容,等等。
把细碎、消耗太多精力的事情,交由讯飞办公产品来完成,把文字化繁为简、抽丝剥茧,帮我们整理信息,看到环环相扣的内容, 我们就能更好地提出观点,有效沟通,站在更高的层次上、做出好的判断。用把握关键的态度,来看清更远的道路,才更能掌握自己的方向。
三、 大模型进到垂类应用,要掌控的关键是在乎用户
前些年出现了不少技术风口,从起步到狂飙,其中一部分已经退潮,以VR最为典型。都说流量变贵,产品内卷,生意难做,但忽略了真正的关键还是在产品是否让用户感受到价值。
要敬畏用户,不要收割用户,要追求对用户的价值,不要追求自我的表现。
要追求对用户的价值。 还是以工作场合为例,现代职场,是供需错位的,劳动力供给多、需求岗位少,但反过来,有挑战性的工作多,能找准关键、执行产出的优质力量少。对个体来说,能否从埋头案间,到对于复杂问题的解决有自己的见解,能够寻求资源与方法解决问题,掌握自己职业道路的主动权,是底层的需求逻辑。很多人意识到了这个问题,但人是有限的主体,收集、查找、记录、提炼等基础工作占据了太多精力。更深层次的痛点,是相应的丧失掌控感,埋头太久,反而要聚焦的商业逻辑说不好,验证能否跑通的里程碑不知道。讯飞办公瞄准的正是这部分需求,在上一次AI时代,讯飞办公提供的价值是“语音转写”,在AIGC/大模型时代,通过星火大模型,讯飞办公则将通过 “提炼关键”,解决机转文稿没有逻辑、消耗人工返工、锋芒埋没进基础会议、文字工作的痛点,从而把掌控感和主动权交还到用户手中。
△职场压力主要来自职场失控感 来源:脉脉数据研究院
抛开内核谈物理属性没有意义,物理属性要为价值内核服务。
以讯飞办公本X3的会议纪要功能为例,有人测评,开会时在纸墨屏上写下自己关心的要点,与不做手写,所生成的会议纪要是完全不同的,带手写要点的版本完成度要高出很多。远比轻薄本和平板更轻巧的办公本,打开就进入记录和批注,没有多余的步骤,也更贴合开会与沟通场景的需求。把大模型相关能力做进垂类硬件里,不是空谈物理属性,是为功能性价值找体验上最匹配的形态。
抛开用户使用频率谈重构就会变成套路,大模型走进C端要多讲适应,多讲贴合。
很多web网页、办公应用中的对话助手,日活都不到应用自身总日活用户的1%,说明对解决用户的问题帮助不够大,这就很难去做商业化,而微软确实足够强,office 365 copilot定价30美元/月,比主线产品贵一倍,且还没有正式上线,就已经有千万美元的订阅,如此能打,除了用户尝鲜之外,本质上还是因为office的辅助编辑创作足够高频,也足够贴合所依存的产品,才能够保持活力。
结语
随着大模型在垂类应用中掀起的浪潮越来越近,也给了我们更多的选择,使得我们可以把握关键,过滤杂音,更接近事物的本质,辨析思考一个事物或问题的根本或关键是什么。无论如何,把事当事的职场人,这次把时代变革的缩影掌握在手,不要错过。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓