什么是 LangChain4j?Java 开发者必知的大模型应用开发框架

随着大语言模型(LLM)的广泛应用,越来越多的开发者希望将 AI 能力集成进自己的应用系统中。对于 Java 开发者而言,LangChain4j 的出现就像一把钥匙,打开了大模型时代的新大门。

图片

一、为什么 Java 开发者也需要关注大模型?

在过去的一年中,大语言模型如 ChatGPT、Claude、Gemini 等爆火,带来了智能问答、代码生成、知识检索等一系列新能力。但这些工具大多数以 Python 为主,Java 世界的开发者往往感到“看得懂却用不上”。

然而,Java 在企业开发中依然占据主流地位。成千上万的 Spring Boot 项目、微服务架构、企业系统亟需一种 优雅、安全、可维护 的方式接入大模型。

这正是 LangChain4j 登场的时机。

二、LangChain vs LangChain4j:一脉相承的设计哲学

项目名称

开发语言

目标群体

功能特性

LangChain

Python

AI 原型/研究者

快速构建多组件AI系统

LangChain4j

Java

企业开发者

企业级LLM交互框架

LangChain4j 是 LangChain 的 Java 实现版本,由 langchain4j 官方团队开发,旨在提供一个标准化、模块化的 Java 框架,使得 Java 开发者也能像 Python 社区一样,轻松构建基于大模型的智能系统。

三、LangChain4j 可以用来做什么?

LangChain4j 不是一个“模型”,而是一个构建 LLM 应用的框架,它将复杂的调用、上下文管理、工具集成进行高度抽象,帮助开发者聚焦业务逻辑。

✅ 主要能力包括:

  • 调用主流大模型:支持 OpenAI、Azure、百度文心、阿里通义、DeepSeek 等

  • 多轮对话管理:通过 Memory 实现上下文连续交互

  • 函数调用(Function Calling):让大模型调用你的 Java 方法

  • 工具集成(Tool Calling):组合多个 AI 能力完成任务

  • RAG 问答系统构建:结合向量数据库进行文档问答

  • 可与 Spring Boot 无缝集成:更适合 Java 项目中的微服务调用

四、LangChain4j 的核心组件有哪些?

如果你了解过 LangChain,你会发现 LangChain4j 延续了很多设计理念。它的核心模块包括:

组件

作用说明

LLM

语言模型(如 OpenAI、百度文心)

PromptTemplate

可复用的提示词模板

Memory

多轮对话的上下文管理

Tool

可被大模型调用的 Java 工具方法

Chain

多个组件串联组成一个任务执行链

Embedding

文本向量化模块,结合 Retriever 构建知识库系统

Retriever

检索机制,可与 Redis、Weaviate 等向量数据库对接

这些组件之间可以任意组合,打造灵活多变的 AI 应用。

五、它与“直接调用模型API”有什么区别?

许多开发者会问:“我直接用 Feign 或 OkHttp 调 OpenAI 接口不也可以吗?”的确可以。但你会逐渐遇到这些问题:

  • Prompt 难以管理和复用

  • 上下文管理混乱,无法构建多轮会话

  • 无法优雅调用本地业务逻辑(函数调用)

  • 难以组合多个模块(如模型 + 检索 + 工具)

  • 缺少调试、日志、缓存等企业级支持

LangChain4j 提供了一套抽象统一、便于维护、可拓展的完整体系,大幅降低了复杂度。

六、LangChain4j 支持哪些模型?

截至目前,LangChain4j 已支持包括但不限于以下模型接入:

  • ✅ OpenAI(ChatGPT、GPT-4)

  • ✅ Azure OpenAI Service

  • ✅ DeepSeek

  • ✅ 百度文心一言

  • ✅ 阿里通义千问

  • ✅ HuggingFace 本地模型

  • ✅ 自定义本地服务(通过 REST)

未来还有望支持更多私有化模型和国产大模型系统。

七、LangChain4j 的未来发展潜力

LangChain4j 正处在快速发展阶段,它的设计理念是“对标 Python LangChain 的 Java 实现”,且正在积极对接 Java 生态(如 Spring、Micronaut、Quarkus)。未来的应用空间包括:

  • 企业智能客服系统

  • AI代码审查与重构工具

  • 法律/医疗/金融的私有问答助手

  • 多模态内容生成平台

  • 智能工单派发系统

图片

在大模型时代,Java 不再只是“企业级后端开发语言”,它也可以是智能交互、知识问答、AI 自动化的第一选择。而 LangChain4j,就是连接 Java 与大模型世界的桥梁。

接下来我会针对LangChain4j出一个系列,深入浅出的介绍如何使用LangChain4j实现大模型的应用交互

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

### LangChain4j 底层实现使用的大语言模型框架 LangChain4j 是一个专门为 Java 程序员设计的框架,用于与大语言模型(LLM)进行交互。它通过提供多种接口和工具来简化 LLM 的集成过程[^2]。在 LangChain4j 的底层实现中,支持了多个主流的大语言模型框架,这些框架允许开发者灵活地选择适合其应用场景的模型。 以下是 LangChain4j 支持的一些大语言模型框架: 1. **Hugging Face Transformers** Hugging Face 提供了丰富的预训练模型库,LangChain4j 可以通过调用 Hugging Face 的 API 或直接加载本地模型来使用这些预训练模型[^1]。这种集成方式使得开发者能够轻松利用如 GPT、BERT、T5 等名模型。 2. **OpenAI** OpenAI 提供的 GPT 系列模型是目前最流行的大语言模型之一。LangChain4j 提供了专门的接口(例如 `ChatLanguageModel` 和 `StreamingChatLanguageModel`),使得与 OpenAI 的 API 集成变得简单高效。 3. **Anthropic** Anthropic 的 Claude 模型系列以其对话理解和生成能力著称。LangChain4j 支持通过 Anthropic 的 API 进行模型调用,从而为用户提供更多选择。 4. **Google PaLM** Google 的 PaLM 模型系列也得到了 LangChain4j 的支持。开发者可以通过该框架访问 PaLM 的强大功能,并将其应用于各种自然语言处理任务。 5. **阿里云通义千问(Qwen)** 阿里云的通义千问(Qwen)作为国内领先的多模态大模型,同样被 LangChain4j 所支持。开发者可以利用 LangChain4j 轻松接入 Qwen 的 API,实现中文场景下的复杂应用开发[^1]。 6. **其他自定义模型** 除了上述主流框架外,LangChain4j 还支持用户自定义模型的集成。这包括加载本地模型或通过私有 API 调用企业内部训练的模型[^2]。 以下是一个简单的代码示例,展示如何通过 LangChain4j 调用 OpenAI 的 GPT 模型: ```java import ai.langchain.ChatLanguageModel; import ai.langchain.chat.Completion; public class LangChainExample { public static void main(String[] args) { ChatLanguageModel model = new ChatLanguageModel("openai", "gpt-3.5-turbo", "your-api-key"); Completion completion = model.complete("Hello, how are you?"); System.out.println(completion.getText()); } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值