随着大语言模型(LLM)的广泛应用,越来越多的开发者希望将 AI 能力集成进自己的应用系统中。对于 Java 开发者而言,LangChain4j 的出现就像一把钥匙,打开了大模型时代的新大门。
一、为什么 Java 开发者也需要关注大模型?
在过去的一年中,大语言模型如 ChatGPT、Claude、Gemini 等爆火,带来了智能问答、代码生成、知识检索等一系列新能力。但这些工具大多数以 Python 为主,Java 世界的开发者往往感到“看得懂却用不上”。
然而,Java 在企业开发中依然占据主流地位。成千上万的 Spring Boot 项目、微服务架构、企业系统亟需一种 优雅、安全、可维护 的方式接入大模型。
这正是 LangChain4j 登场的时机。
二、LangChain vs LangChain4j:一脉相承的设计哲学
项目名称 |
开发语言 |
目标群体 |
功能特性 |
---|---|---|---|
LangChain |
Python |
AI 原型/研究者 |
快速构建多组件AI系统 |
LangChain4j |
Java |
企业开发者 |
企业级LLM交互框架 |
LangChain4j 是 LangChain 的 Java 实现版本,由 langchain4j
官方团队开发,旨在提供一个标准化、模块化的 Java 框架,使得 Java 开发者也能像 Python 社区一样,轻松构建基于大模型的智能系统。
三、LangChain4j 可以用来做什么?
LangChain4j 不是一个“模型”,而是一个构建 LLM 应用的框架,它将复杂的调用、上下文管理、工具集成进行高度抽象,帮助开发者聚焦业务逻辑。
✅ 主要能力包括:
-
调用主流大模型:支持 OpenAI、Azure、百度文心、阿里通义、DeepSeek 等
-
多轮对话管理:通过 Memory 实现上下文连续交互
-
函数调用(Function Calling):让大模型调用你的 Java 方法
-
工具集成(Tool Calling):组合多个 AI 能力完成任务
-
RAG 问答系统构建:结合向量数据库进行文档问答
-
可与 Spring Boot 无缝集成:更适合 Java 项目中的微服务调用
四、LangChain4j 的核心组件有哪些?
如果你了解过 LangChain,你会发现 LangChain4j 延续了很多设计理念。它的核心模块包括:
组件 |
作用说明 |
---|---|
LLM |
语言模型(如 OpenAI、百度文心) |
PromptTemplate |
可复用的提示词模板 |
Memory |
多轮对话的上下文管理 |
Tool |
可被大模型调用的 Java 工具方法 |
Chain |
多个组件串联组成一个任务执行链 |
Embedding |
文本向量化模块,结合 Retriever 构建知识库系统 |
Retriever |
检索机制,可与 Redis、Weaviate 等向量数据库对接 |
这些组件之间可以任意组合,打造灵活多变的 AI 应用。
五、它与“直接调用模型API”有什么区别?
许多开发者会问:“我直接用 Feign 或 OkHttp 调 OpenAI 接口不也可以吗?”的确可以。但你会逐渐遇到这些问题:
-
Prompt 难以管理和复用
-
上下文管理混乱,无法构建多轮会话
-
无法优雅调用本地业务逻辑(函数调用)
-
难以组合多个模块(如模型 + 检索 + 工具)
-
缺少调试、日志、缓存等企业级支持
LangChain4j 提供了一套抽象统一、便于维护、可拓展的完整体系,大幅降低了复杂度。
六、LangChain4j 支持哪些模型?
截至目前,LangChain4j 已支持包括但不限于以下模型接入:
-
✅ OpenAI(ChatGPT、GPT-4)
-
✅ Azure OpenAI Service
-
✅ DeepSeek
-
✅ 百度文心一言
-
✅ 阿里通义千问
-
✅ HuggingFace 本地模型
-
✅ 自定义本地服务(通过 REST)
未来还有望支持更多私有化模型和国产大模型系统。
七、LangChain4j 的未来发展潜力
LangChain4j 正处在快速发展阶段,它的设计理念是“对标 Python LangChain 的 Java 实现”,且正在积极对接 Java 生态(如 Spring、Micronaut、Quarkus)。未来的应用空间包括:
-
企业智能客服系统
-
AI代码审查与重构工具
-
法律/医疗/金融的私有问答助手
-
多模态内容生成平台
-
智能工单派发系统
在大模型时代,Java 不再只是“企业级后端开发语言”,它也可以是智能交互、知识问答、AI 自动化的第一选择。而 LangChain4j,就是连接 Java 与大模型世界的桥梁。
接下来我会针对LangChain4j出一个系列,深入浅出的介绍如何使用LangChain4j实现大模型的应用交互
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓