内容转自https://www.cnblogs.com/wzqjy/p/7921063.html
并行流就是把一个内容分成多个数据块,并用不同的线程分别处理每个数据块的流。穿行流则相反,并行流的底层其实就是ForkJoin框架的一个实现。
那么先了解一下ForkJoin框架吧。
Fork/Join框架:在必要的情况下,将一个大任务,进行拆分(fork) 成若干个子任务(拆到不能再拆,这里就是指我们制定的拆分的临界值),再将一个个小任务的结果进行join汇总。
Fork/Join与传统线程池的区别!
Fork/Join采用“工作窃取模式”,当执行新的任务时他可以将其拆分成更小的任务执行,并将小任务加到线程队列中,然后再从一个随即线程中偷一个并把它加入自己的队列中。
就比如两个CPU上有不同的任务,这时候A已经执行完,B还有任务等待执行,这时候A就会将B队尾的任务偷过来,加入自己的队列中,对于传统的线程,ForkJoin更有效的利用的CPU资源!
我们来看一下ForkJoin的实现:实现这个框架需要继承RecursiveTask 或者 RecursiveAction ,RecursiveTask是有返回值的,相反Action则没有
package ForkJionP;
import java.util.concurrent.RecursiveTask;
public class ForkJoinWork extends RecursiveTask<Long> {
private Long start;//起始值
private Long end;//结束值
public static final Long critical = 100000L;//临界值
public ForkJoinWork(Long start, Long end) {
this.start = start;
this.end = end;
}
@Override
protected Long compute() {
//判断是否是拆分完毕
Long lenth = end - start;
if(lenth<=critical){
//如果拆分完毕就相加
Long sum = 0L;
for (Long i = start;i<=end;i++){
sum += i;
}
return sum;
}else {
//没有拆分完毕就开始拆分
Long middle = (end + start)/2;//计算的两个值的中间值
ForkJoinWork right = new ForkJoinWork(start,middle);
right.fork();//拆分,并压入线程队列
ForkJoinWork left = new ForkJoinWork(middle+1,end);
left.fork();//拆分,并压入线程队列
//合并
return right.join() + left.join();
}
}
}
测试:
package ForkJionP;
import org.junit.Test;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.stream.LongStream;
public class ForkJoinWorkDemo {
public void test() {
//ForkJoin实现
long l = System.currentTimeMillis();
ForkJoinPool forkJoinPool = new ForkJoinPool();//实现ForkJoin 就必须有ForkJoinPool的支持
ForkJoinTask<Long> task = new ForkJoinWork(0L,10000000000L);//参数为起始值与结束值
Long invoke = forkJoinPool.invoke(task);
long l1 = System.currentTimeMillis();
System.out.println("invoke = " + invoke+" time: " + (l1-l));
//invoke = -5340232216128654848 time: 76474
}
public void test2(){
//普通线程实现
Long x = 0L;
Long y = 10000000000L;
long l = System.currentTimeMillis();
for (Long i = 0L; i <= y; i++) {
x+=i;
}
long l1 = System.currentTimeMillis();
System.out.println("invoke = " + x+" time: " + (l1-l));
//invoke = -5340232216128654848 time: 160939
}
@Test
public void test3(){
//Java 8 并行流的实现
long l = System.currentTimeMillis();
long reduce = LongStream.rangeClosed(0, 10000000000L).parallel().reduce(0, Long::sum);
long l1 = System.currentTimeMillis();
System.out.println("invoke = " + reduce+" time: " + (l1-l));
//invoke = -5340232216128654848 time: 15531
}
}
我们观察上面可以看出来执行10000000000L的相加操作各自执行完毕的时间不同。观察到当数据很大的时候ForkJoin比普通线程实现有效的多,但是相比之下ForkJoin的实现实在是有点麻烦,这时候Java 8 就为我们提供了一个并行流来实现ForkJoin实现的功能。可以看到并行流比自己实现ForkJoin还要快
Java 8 中将并行流进行了优化,我们可以很容易的对数据进行并行流的操作,Stream API可以声明性的通过parallel()与sequential()在并行流与穿行流中随意切换!