Tarjan算法介绍

Tarjan算法是一种用于图的联通性分析的图论算法,能在线性时间内找到无向图的割点、桥,并求解双连通分量。它基于深度优先遍历,核心包括dfn和low数组,常用于求解图的结构特性,如求桥、割点及双连通分量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Tarjan算法介绍:


Tarjan算法是图论中的一种算法,用作于图的联通性


  • 它可以做什么?

    根据 Robert Tarjan 的名字命名的算法Tarjan算法可以在线性时间内求出无向图割点与桥,再进一步的求出双联通分量,也在数据结构上做出了贡献。

    Tarjan算法的用途
    1.求桥和割点
    2.求点和边的双连通分量
    3.求强连通*


  • 做法基础

    Tarjan算法基于图的深度优先遍历上(没错!就是与深度优先搜索(DFS)一样的东西)

(如果没学过这样东西的人可以先收藏一下,等学过了在看)
Targan算法的流程
利用dfs来遍历图来构建一种数型的结构

Tarjan算法的两个核心数组
dfn:我们用dfn数组记录
low:我们用low[i]表示一个节点的子树中可以到达最小的dfn
(显然对于一个刚刚遍历到的点我们给他赋上一个新的dfn,low)


‘栗’子来了!


给出一张连通的无向图G,求出至少加入多少条边才能使得图G是一个边双连通的。

即求边双连通分量把度为一的节点数x (x+1)/2即为答案
注意:求边双连通分量时low相同的即为同一组






















(标准模板.cpp)

......
const int M=10005;
bool map[M][M],vis[M];  
int low[M],dfn[M],cnt[M],num,n,m;
void init(){
    Mt(vis);Mt(map);Mt(low);
    Mt(dfn);Mt(cnt);num=0;
}
void dfs(
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值