- 博客(0)
- 资源 (7)
- 收藏
- 关注
Detection and Removal of Outliers in Data Sets
Detection and Removal of Outliers in Data Sets!主要作用是发现异常值并剔除异常值
2019-11-30
Maximum Likelihood Outlier Detection
• Maximum Likelihood Outlier Detection (MLOD) is an inlier-based outlier detection algorithm. The problem of inlier-based outlier detection is to find outliers in a set of samples (called the evaluation set) using another set of samples which consists only of inliers (called the model set). MLOD orders the samples in the evaluation set according to their degree of outlyingness. The degree of outlyingness is measured by the ratio of probability densities of evaluation and model samples. The ratio is estimated by the density-ratio estimation method KLIEP.
2019-11-30
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人