密码学中小费马定理的证明

开始费马小定理的证明:P是质数

0,1,2,3,4…p-1是p的完全剩余系(都与P没有比1大公因子)

∵a,p互质

∴a, 2a, 3a, 4a …(p-1)a 也是mod p的完全剩余系{a, 2a, 3a, 4*a …(p-1)*a}mod p ≡ {0,1,2,3,4…p-1}

∴123…(p-1)≡1a2a3a…(p-1)*a (mod p)

∴ (p-1)! ≡ (p-1)!*a^(p-1) (mod p)

两边同时约去(p-1)!

a^(p-1)≡1(mod p)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HuangDXian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值