开始费马小定理的证明:P是质数
0,1,2,3,4…p-1是p的完全剩余系(都与P没有比1大公因子)
∵a,p互质
∴a, 2a, 3a, 4a …(p-1)a 也是mod p的完全剩余系{a, 2a, 3a, 4*a …(p-1)*a}mod p ≡ {0,1,2,3,4…p-1}
∴123…(p-1)≡1a2a3a…(p-1)*a (mod p)
∴ (p-1)! ≡ (p-1)!*a^(p-1) (mod p)
两边同时约去(p-1)!
a^(p-1)≡1(mod p)
开始费马小定理的证明:P是质数
0,1,2,3,4…p-1是p的完全剩余系(都与P没有比1大公因子)
∵a,p互质
∴a, 2a, 3a, 4a …(p-1)a 也是mod p的完全剩余系{a, 2a, 3a, 4*a …(p-1)*a}mod p ≡ {0,1,2,3,4…p-1}
∴123…(p-1)≡1a2a3a…(p-1)*a (mod p)
∴ (p-1)! ≡ (p-1)!*a^(p-1) (mod p)
两边同时约去(p-1)!
a^(p-1)≡1(mod p)