1元,5元,10元,20元,50元、100元面值人民币组合给定x元的问题

问题描述

目前市面上的纸币主要有1元,5元,10元,20元,50元、100元六种,如果要买一件商品x元,有多少种货币组成方式?

解答

我们先进行如下变量的定义:

dp[i][sum] = 用前 i 种硬币构成sum金额的所有组合数。

那么题目的问题实际上就是求dp[m][sum],即用前m种硬币(所有硬币)构成sum的所有组合数。

V0=1,V1=5,V2=10,V3=20……

dp[i][sum] = dp[i-1][sum - 0*Vm] + dp[i-1][sum - 1*Vm]+ dp[i-1][sum - 2*Vm] + ... + dp[i-1][sum - K*Vm];

其中K = sum / Vm

换一种更抽象的数学描述就是:

我们可以这么考虑,希望用m种纸币构成sum元。

如果sum=0,那么无论有前多少种来组合0,只有一种可能,就是各个系数都等于0;

dp[i][0] = 1 // i = 0, 1, 2, … , m

如果我们用二位数组表示dp[i][sum], 我们发现第i行的值全部依赖与i-1行的值,所以我们可以逐行求解该数组。如果前0种纸币要组成sum,我们规定为dp[0][sum] = 0.

dp[j] 代表:之前 0 到 i-1 种货币组合成 j 元的种类数。

dp[j-money[i]] 代表:从 j 元中抽出一张 money[i] 的货币(即加入了money[i]这种货币),剩下组合成 j-money[i] 元的种类数。

由于dp[j]在不停地被替换,所以不用担心 dp[i-1][sum - 2*Vm] 这种,在算 dp[j-money[i]] 的时候,那个时候这里面的种类数已经是最新最全的 包含了货币money[i]的了。

代码实现方式

public class Test {
    /**
     * @param x 商品金额
     */
    public static void test(int n){
        //纸币面额
        int money[]={1,5,10,20,50,100};
        int dp[] = new int[n+1];
        dp[0] = 1;
        for(int i = 0;i < 6;++i){
            for(int j = money[i];j <= n;++j){
                dp[j] =(dp[j]+dp[j-money[i]]);
            }
        }
        System.out.println(dp[n]);
    }

    public static void main(String[] args) {      
        //指定100元的金额
        test(100);      
    }
}

分析

这种思路属于算法中的动态规划。也是动态规划的经典题目。很明显,大大优化了性能问

<think>好的,用户想用C++实现将100分解为1510的所有组合方式。我需要先理解这个问题,然后找出合适的算法来解决它。 首先,问题是将100拆分成1510组合,有多少种不同的方式。这类似于整数拆分问题,但这的限制是只能使用特定面额的硬币。通常,这类问题可以用动态规划或者递归回溯来解决。不过用户提供的参考代码是递归实现的整数分解,可能更倾向于递归方法。 接下来,我要确定变量和约束条件。总金额是100,面额分别是1510。每种面额可以使用0到多个,只要总和不超过100。需要遍历所有可能的组合,并统计满足条件的组合数。 考虑到效率问题,如果使用三重循环(分别对应1051的数量),可能会有性能上的问题,因为当金额较大时,循环次数过多。但100不算太大,可能还是可行的。不过递归或动态规划的方法可能更高效。 或者,可以采用生成所有可能的105的数量,然后计算1的数量是否为非负整数。例如,设10的数量为x,5为y,那么1的数量z=100-10x-5y,只要z>=0即可。这样只需要遍历x和y的可能值。这种方法可能更高效,因为减少了循环次数。 具体来说,x的范围是从0到10(因为10*10=100),y的范围对于每个x来说是从0到(100-10x)/5。然后计算z是否非负。这样,只需要两层循环即可,复杂度大大降低。 所以,可能的解决方法是使用两重循环遍历x和y,计算z的值,并记录所有有效组合。 不过用户提供的参考代码使用的是递归方法,可能用户希望类似的实现方式。递归的方式可以更灵活地处理不同面额的情况,尤其是在面额种类较多时。不过对于这个问题,面额只有三种,循环可能更简单。 但根据用户提供的参考代码中的整数分解方法,该代码是递归分解,每次选择当前数的一个分解方式,然后继续分解剩余部分。但原题中的分解允许重复的面额,但需要指定面额为1510。因此,可能需要调整递归的条件,确保每次选择的硬币面额不超过剩余金额,并且按降序排列以避免重复组合。 例如,在递归时,为了保证组合的唯一性(比如10+5+15+1+10视为同一种组合),需要固定硬币的选择顺序,比如按照从大到小的顺序选择。例如,每次选择的硬币面额不大于前一次选择的,这样可以避免重复计数。 不过在这个问题中,可能不需要考虑顺序,因为组合方式中的顺序不影响结果,例如10+5+15+10+1视为同一种组合。因此,需要生成的是不考虑顺序的组合,即每种组合中的硬币数量是按照面额从大到小排列的。 因此,递归方法可能需要按照递减的顺序来枚举面额,确保不会出现重复的组合。例如,每次选择的面额不大于前一次选择的,这样可以避免重复。 但是,用户的问题中的面额有三种,所以可能需要调整递归策略。例如,可以按照1051的顺序来分解,每次选择当前面额的数量,然后递归处理剩余金额,但只能选择当前面额或更小的面额。这样可以保证组合的唯一性。 或者,可以遍历10的数量,然后在剩下的金额中遍历5的数量,剩下的由1补足。这样,两层循环即可完成,不需要递归。这可能更高效,也更容易实现。 例如,对于10的数量x,从0到10,然后对于每个x,5的数量y从0到(100-10x)/5,然后剩下的金额是100-10x-5y,这部分由1补足,即z=100-10x-5y,必须非负。然后每个有效的x和y对应一种组合方式。这样总共有多少种组合呢? 这样计算的话,代码可以写成两重循环,外层是x,从0到10,内层y从0到(100-10x)/5。然后对于每个x和y,z=100-10x-5y >=0。每个这样的组合都是一个有效的解。这样就能得到所有的组合方式。 这种方法的时间复杂度是O(n^2),对于100来说,x最多10次,y最多是当x=0时,y最大为20,所以总循环次数大约是10*20=200次左右,非常快。因此,这种方法效率很高,而且实现简单。 因此,用户的问题可以用这种方法解决,代码结构大致如下: for (int x = 0; x <= 10; x++) { int remaining = 100 - 10 * x; for (int y = 0; y <= remaining / 5; y++) { int z = remaining - 5 * y; if (z >= 0) { count++; // 如果需要输出组合,可以输出x, y, z } } } 这应该可以得到所有可能的组合方式。不过用户可能希望输出每种组合的具体情况,而不仅仅是计数。因此,代码需要遍历x和y,并输出对应的z。 不过用户的问题可能更关注如何用C++实现,所以需要将此逻辑转化为C++代码,并输出所有组合。 另外,用户提供的参考代码是递归实现整数分解,但这问题更适用于循环方法。但可能用户希望类似递归的方式,或者需要动态规划的方法。但根据问题的情况,循环方法更简单。 总结:使用两重循环遍历105的数量,计算1的数量,只要总和正确即可。这种方法高效且容易实现。</think>以下是使用C++实现将100分解为1510所有组合方式的解决方案: ### 算法思路 通过两重循环枚举105的数量,剩余金额由1补足。设: - 10数量为$x$(范围:$0 \le x \le 10$) - 5数量为$y$(范围:$0 \le y \le \lfloor (100-10x)/5 \rfloor$) - 1数量$z = 100 - 10x -5y$(需满足$z \ge 0$) ### 代码实现 ```cpp #include <iostream> using namespace std; int main() { int count = 0; const int total = 100; for (int x = 0; x <= 10; ++x) { // 10最多10张 int remaining_after_10 = total - 10 * x; if (remaining_after_10 < 0) break; for (int y = 0; y <= remaining_after_10 / 5; ++y) { // 5数量 int z = remaining_after_10 - 5 * y; if (z >= 0) { ++count; cout << "方案" << count << ": " << x << "张10 + " << y << "张5 + " << z << "张1" << endl; } } } cout << "总共有" << count << "种组合方式" << endl; return 0; } ``` ### 关键点说明 1. **循环控制**:外层循环控制10数量,内层循环控制5数量,1数量通过计算得出 2. **边界条件**: - 10数量上限为10($10 \times 10 = 100$) - 5数量上限通过剩余金额除以5确定 3. **时间复杂度**:$O(n^2)$,实际执行约200次循环(100时) ### 执行结果示例 ``` 方案1: 0张10 + 0张5 + 1001 方案2: 0张10 + 15 + 951 ... 方案541: 9张10 + 2张5 + 0张1 方案542: 1010 + 0张5 + 0张1 总共有542种组合方式 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值