在完成关于数组的大量算法中,基本都会涉及到元素交换,比如排序中是最常见的,一般的方法是新建一个临时变量,然后完成交换,如果给定的数组中元素是有范围的,其实还有其他方法也可以完成交换。下面就来总结一下这些方法。
临时变量法
临时变量法是最简单的,这个不过多解释。试用任何类型的元素交换。
public static void swap(int[] a, int i, int j){
int temp = a[i];
a[i] = a[j];
a[j] = temp;
}
异或法
异或运算是针对具体的每一个位相同为0,不同为1,即1^1 = 0, 0^0 = 0, 1^0 = 1, 0^1 = 1,
所以对于任何整数x有x^x = 0, x^0 = x ,且运算满足结合律。所以可以用如下方法完成交换。
public static void swap(int[] a, int i, int j){
a[i] = a[i] ^ a[j];
a[j] = a[i] ^ a[j]; // a[j] = a[i] ^ a[j] ^ a[j] = a[i]
a[i] = a[i] ^ a[j]; // a[i] = a[i] ^ a[j] ^ a[i] = a[j]
}
但是这里有个问题,如果要交换的是同一个位置,即i = j, 上面代码会有问题,a[i] = a[i] ^ a[j] = 0,此后a[i] = a[j] = 0,不管传入时a[i] 等于多少,最后都等于0了。所以改进方案是交换前先判断i和j是否相等,如果不想等才交换。改进代码如下:
public static void swap(int[] a, int i, int j){
if(i != j){
a[i] = a[i] ^ a[j];
a[j] = a[i] ^ a[j];
a[i] = a[i] ^ a[j];
}
}
加减法
可以先把要交换的两个数相加,然后分别减去对方的值,也能完成交换。这里有个问题,a[i]+a[j] 有可能会越界,但是实际测试就算真的越界,还是能完成交换,可以用实际数据测试一下。
public static void swap(int[] a, int i, int j){
a[i] = a[i] + a[j];
a[j] = a[i] - a[j]; // a[j] = a[i] + a[j] - a[j]
a[i] = a[i] - a[j]; // a[i] = a[i] + a[j] - a[i]
}
乘除法
既然可以用加减法,乘除法也是可以一试的,先把两个数相乘,然后分别除以对方,就能完成交换。这里也会有问题,a[i] * a[j]也可能出现越界情况,但是实测也能得到正确结果。关键乘除法还有一个重大问题,a[i]和a[j]不能等于0,所以此方法不推荐使用。
public static void swap(int[] a, int i, int j){
a[i] = a[i] * a[j];
a[j] = a[i] / a[j];
a[i] = a[i] / a[j];
}
总结
不申请临时变量的方法感觉高大上,但是每种方法总会有一些问题,所以为了保证少出问题,尽量还是使用第一种简单的申请临时变量法吧,这里列出这些方法,主要是为了开阔思维,了解更多的运算逻辑。