对于所有的子序列,如果我们固定右端点,那么左端点就有一个区间了(这种想法和4268有点像?),那么如果我们取了一个左端点j能让区间值最大,那么就取了,左区间从[l,r]分裂为[l,j−1]和[j+1,r]。
那么取最大的k个就是答案了。
至于怎么确定最大的左端点,显然通过后缀和+RMQ就可以实现了。
[r+1,n]对于所有的左端点都是一样的,所以有没有对于我们取最大值不影响。
第一次写保存取值点的RMQ。。虽然很简单就是了。。
话说LCA也可以这么搞
#include <cstdio>
#include <algorithm>
#include <queue>
#define FOR(i,j,k) for(i=j;i<=k;++i)
typedef long long ll;
const int N = 500005;
using namespace std;
int bin[20], lb[N], a[N], mx[N][20];
int query(int l, int r) {
if (l == r) return l;
int t = lb[r - l + 1];
int t1 = mx[l][t], t2 = mx[r - bin[t] + 1][t];
return a[t1] > a[t2] ? t1 : t2;
}
struct Data {
int i, l, r, t, val;
Data(int a, int b, int c)
: i(a), l(b), r(c), t(query(b, c)) {
val = ::a[t] - ::a[i + 1];
}
bool operator< (const Data &b) const {
return val < b.val;
}
};
priority_queue<Data> q;
int main() {
int i, j, t1, t2, n, K, l, r; ll ans = 0;
bin[0] = 1; FOR(i,1,19) bin[i] = bin[i - 1] << 1;
scanf("%d%d%d%d", &n, &K, &l, &r);
FOR(i,1,n) scanf("%d", a + i);
for(i=n;i;--i) a[i] += a[i + 1];
lb[0] = -1; FOR(i,1,n) lb[i] = lb[i >> 1] + 1;
FOR(i,1,n) mx[i][0] = i;
for (i=n;i;--i) FOR(j,1,18) if(i + bin[j] - 1 <= n) {
t1 = mx[i][j - 1], t2 = mx[i + bin[j - 1]][j - 1];
mx[i][j] = a[t1] > a[t2] ? t1 : t2;
}
FOR(i,1,n) if (i - l + 1 > 0)
q.push(Data(i, max(1, i - r + 1), i - l + 1));
FOR(i,1,K) {
Data t = q.top(); q.pop();
ans += t.val;
if (t.t > t.l) q.push(Data(t.i, t.l, t.t - 1));
if (t.t < t.r) q.push(Data(t.i, t.t + 1, t.r));
}
printf("%lld", ans);
return 0;
}
2006: [NOI2010]超级钢琴
Description
小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的音乐。 这架超级钢琴可以弹奏出n个音符,编号为1至n。第i个音符的美妙度为Ai,其中Ai可正可负。 一个“超级和弦”由若干个编号连续的音符组成,包含的音符个数不少于L且不多于R。我们定义超级和弦的美妙度为其包含的所有音符的美妙度之和。两个超级和弦被认为是相同的,当且仅当这两个超级和弦所包含的音符集合是相同的。 小Z决定创作一首由k个超级和弦组成的乐曲,为了使得乐曲更加动听,小Z要求该乐曲由k个不同的超级和弦组成。我们定义一首乐曲的美妙度为其所包含的所有超级和弦的美妙度之和。小Z想知道他能够创作出来的乐曲美妙度最大值是多少。
Input
第一行包含四个正整数n, k, L, R。其中n为音符的个数,k为乐曲所包含的超级和弦个数,L和R分别是超级和弦所包含音符个数的下限和上限。 接下来n行,每行包含一个整数Ai,表示按编号从小到大每个音符的美妙度。
Output
只有一个整数,表示乐曲美妙度的最大值。
Sample Input
4 3 2 3
3
2
-6
8
Sample Output
11
【样例说明】
共有5种不同的超级和弦:
音符1 ~ 2,美妙度为3 + 2 = 5
音符2 ~ 3,美妙度为2 + (-6) = -4
音符3 ~ 4,美妙度为(-6) + 8 = 2
音符1 ~ 3,美妙度为3 + 2 + (-6) = -1
音符2 ~ 4,美妙度为2 + (-6) + 8 = 4
最优方案为:乐曲由和弦1,和弦3,和弦5组成,美妙度为5 + 2 + 4 = 11。
HINT
N<=500,000
k<=500,000
-1000<=Ai<=1000,1<=L<=R<=N且保证一定存在满足条件的乐曲
钢琴曲最美妙度求解

本文介绍了一种算法思路,用于解决寻找由k个不同超级和弦组成的乐曲最大美妙度的问题。通过使用后缀和与RMQ技术确定最佳的和弦组合,最终实现高效求解。
1008

被折叠的 条评论
为什么被折叠?



