二叉排序树

介绍

  • BST: (Binary Sort(Search) Tree), 对于二叉排序树的任何一个非叶子节点,要求左子节点的值比当前节点的值小,右子节点的值比当前节点的值大。
  • 特别说明:如果有相同的值,可以将该节点放在左子节点或右子节点
  • 在这里插入图片描述
 
public class BinarySortTreeDemo {
    public static void main(String[] args) {
        int[] arr = {7, 3, 10, 12, 5, 1, 9, 2};
        BinarySortTree binarySortTree = new BinarySortTree();
        //循环的添加结点到二叉排序树
        for(int i = 0; i< arr.length; i++) {
            binarySortTree.add(new Node(arr[i]));
        }

        //中序遍历二叉排序树
        System.out.println("中序遍历二叉排序树~");
        binarySortTree.infixOrder(); // 1, 3, 5, 7, 9, 10, 12

        //测试一下删除叶子结点


        binarySortTree.delNode(12);


        binarySortTree.delNode(5);
        binarySortTree.delNode(10);
        binarySortTree.delNode(2);
        binarySortTree.delNode(3);

        binarySortTree.delNode(9);
        binarySortTree.delNode(1);
        binarySortTree.delNode(7);


        System.out.println("root=" + binarySortTree.getRoot());


        System.out.println("删除结点后");
        binarySortTree.infixOrder();
    }
}

//创建二叉排序树
class BinarySortTree {
    private Node root;

    public Node getRoot() {
        return root;
    }
    //查找要删除的结点
    public Node search(int value){
        if(root ==null){
            return null;
        }else {
            return  root.search(value);
        }
    }
    //查找父结点
    public Node searchParent(int value) {
        if(root == null) {
            return null;
        } else {
            return root.searchParent(value);
        }
    }

    /**
     *返回的 以node 为根结点的二叉排序树的最小结点的值
     * 删除node 为根结点的二叉排序树的最小结点
     * @param node 传入的结点(当做二叉排序树的根结点)
     * @return 返回的 以node 为根结点的二叉排序树的最小结点的值
     */
    public int delRightTreeMin(Node node) {
        Node targe = node;
        while (targe.left!=null){
            targe=targe.left;
        }
        delNode(targe.value);
        return targe.value;
    }
    //删除结点
    public void delNode(int value) {
        if(root ==null){
            return;
        }else {
            //1.需求先去找到要删除的结点  targetNode
            Node targetNode = search(value);
            //如果没有找到要删除的结点
            if(targetNode == null) {
                return;
            }
            //如果我们发现当前这颗二叉排序树只有一个结点
            if(root.left == null && root.right == null) {
                root = null;
                return;
            }
            //去找到targetNode的父结点
            Node parent = searchParent(value);
            //如果要删除的结点是叶子结点
            if(targetNode.left ==null &&targetNode.right ==null){
                //判断targetNode 是父结点的左子结点,还是右子结点
                if(parent.left != null && parent.left.value == value) { //是左子结点
                    parent.left = null;
                } else if (parent.right != null && parent.right.value == value) {//是由子结点
                    parent.right = null;
                }
            }else if(targetNode.left != null && targetNode.right != null) { //删除有两颗子树的节点
                int minVal = delRightTreeMin(targetNode.right);
                targetNode.value=minVal;
            }else {// 删除只有一颗子树的结点
                //如果要删除的结点有左子结点
                if(parent != null) {
                    //如果 targetNode 是 parent 的左子结点
                    if(parent.left.value == value) {
                        parent.left = targetNode.right;
                    } else { //如果 targetNode 是 parent 的右子结点
                        parent.right = targetNode.right;
                    }
                } else {
                    root = targetNode.right;
                }
            }
        }
    }
    //添加结点的方法
    public void add(Node node) {
        if(root == null) {
            root = node;//如果root为空则直接让root指向node
        } else {
            root.add(node);
        }
    }
    //中序遍历
    public void infixOrder() {
        if(root != null) {
            root.infixOrder();
        } else {
            System.out.println("二叉排序树为空,不能遍历");
        }
    }

}

//创建Node结点
class Node {
    int value;
    Node left;
    Node right;

    public Node(int value) {

        this.value = value;
    }



    /**
     * 查找要删除的结点
     *
     * @param value 希望删除的结点的值
     * @return 如果找到返回该结点,否则返回null
     */
    public Node search(int value) {
        if (value == this.value) {
            return this;
        } else if (value < this.value) {
            if (this.left == null) {
                return null;
            }
            return this.left.search(value);
        } else {
            if (this.right == null) {
                return null;
            }
            return this.right.search(value);
        }
    }

    /**
     * 查找要删除结点的父结点
     *
     * @param value 要找到的结点的值
     * @return 返回的是要删除的结点的父结点,如果没有就返回null
     */
    public Node searchParent(int value) {
        //如果当前结点就是要删除的结点的父结点,就返回
        if ((this.left != null && this.left.value == value) ||
                (this.right != null && this.right.value == value)) {
            return this;
        } else {
            //如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空
            if (value < this.value && this.left != null) {
                return this.left.searchParent(value);
            } else if (value >= this.value && this.right != null) {
                return this.right.searchParent(value);
            } else {
                return null; // 没有找到父结点
            }
        }
    }

    @Override
    public String toString() {
        return "Node [value=" + value + "]";
    }

    //添加结点的方法
    //递归的形式添加结点,注意需要满足二叉排序树的要求
    public void add(Node node) {
        if (node == null) {
            return;
        }
//判断传入的结点的值,和当前子树的根结点的值关系
        if (node.value < this.value) {
            //如果当前结点左子结点为null
            if (this.left == null) {
                this.left = node;
            } else {
                //递归的向左子树添加
                this.left.add(node);
            }
        } else { //添加的结点的值大于 当前结点的值
            if (this.right == null) {
                this.right = node;
            } else {
                //递归的向右子树添加
                this.right.add(node);
            }

        }
    }

    //中序遍历
    public void infixOrder() {
        if (this.left != null) {
            this.left.infixOrder();
        }
        System.out.println(this);
        if (this.right != null) {
            this.right.infixOrder();
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员黄小青

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值