今年公司年会的奖品特别给力,但获奖的规矩却很奇葩:
- 首先,所有人员都将一张写有自己名字的字条放入抽奖箱中;
- 待所有字条加入完毕,每人从箱中取一个字条;
- 如果抽到的字条上写的就是自己的名字,那么“恭喜你,中奖了!”
现在告诉你参加晚会的人数,请你计算有多少概率会出现无人获奖?
此题用到了错排公式,在以下代码的注释里,我简要的概述了该公式的递推过程,想详细了解的可以自行去百度
import java.util.Scanner;
public class NotGetReward{
//第一步,把第n个元素放在一个位置,比如位置k,一共有n-1种方法;
// 第二步,放编号为k的元素,这时有两种情况:把它放到位置n,那么,对于剩下的n-1个元素,
// 由于第k个元素放到了位置n,剩下n-2个元素就有D(n-2)种方法;
// 第k个元素不把它放到位置n,这时,对于这n-1个元素,有D(n-1)种方法;
// 综上得到递推公式,可以发现可以用递归来做;
// D(n) = (n-1) [D(n-2) + D(n-1)]
// 特殊地,D(1) = 0, D(2) = 1.
// 那么D(5)=4*[D(3)+D(4)];依次求得D(3)、D(4),最后D(5)=44
// 所以5个人拿不到奖的概率就是44/120=36.67%
public static float count(int n) {
//这个函数用来得到有多少种可能,每个人拿不到自己的名字,
// 也就是得到分子
if(n==1){
// n=1的时候返回0
return 0;
}
if(n==2){
// n=2的时候返回1
return 1;
}else{
// 否则就递归。
return (n-1)*(count(n-1)+count(n-2));
}
}
// 下面的函数用来求阶乘,也是递归,最后得到分母
public static float probability(int n){
if(n==0){
// 0的阶乘等于1
return 1;
}else{
// 阶乘表示,进行递归
return n*probability(n-1);
}
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
do {
int n = sc.nextInt();
// 将得到的分子分母进行相除,就可以得到概率。
float result = (count(n)/probability(n))*100;
System.out.println(String.format("%.2f", result) + "%");
} while (sc.hasNext());
}
}