转载:直接保存为pb模型

第一种保存pb方法 写入序列化的 PB 文件:

    with tf.gfile.FastGFile(pb_file_path+'model.pb', mode='wb') as f:
        f.write(constant_graph.SerializeToString())

第二种保存pb方法:

方法总结:

1.简单粗暴方式,看下文即可,暂且不说
2.signature_def方式(好处,调用模型时看不到tensor)

  1)获取保存模型的对象builder,    tf.saved_model.builder.SavedModelBuilder(saved_model_dir)
  2)把tensor包装成tensor_info对象,   tf.saved_model.utils.build_tensor_info(x)
  3)把tensor_info包装成signature_def对象,    tf.saved_model.signature_def_utils.build_signature_def(inputs, outputs, 'test_sig_name')
  4)把signature对象加入builder对象,     builder.add_meta_graph_and_variables(sess, ['test_saved_model'], {'test_signature':signature})
  5)保存builder
原创

TensorFlow saved_model 模块

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接: https://blog.csdn.net/thriving_fcl/article/details/75213361
saved_model模块主要用于<a href="https://tensorflow.github.io/serving/architecture_overview" rel="nofollow" target="_blank">TensorFlow Serving</a>。TF Serving是一个将训练好的模型部署至生产环境的系统,主要的优点在于可以保持Server端与API不变的情况下,部署新的算法或进行试验,同时还有很高的性能。

保持Server端与API不变有什么好处呢?有很多好处,我只从我体会的一个方面举例子说明一下,比如我们需要部署一个文本分类模型,那么输入和输出是可以确定的,输入文本,输出各类别的概率或类别标签。为了得到较好的效果,我们可能想尝试很多不同的模型,CNN,RNN,RCNN等,这些模型训练好保存下来以后,在inference阶段需要重新载入这些模型,我们希望的是inference的代码有一份就好,也就是使用新模型的时候不需要针对新模型来修改inference的代码。这应该如何实现呢?

TensorFlow 模型保存/载入的两种方法中总结过。
1. 仅用Saver来保存/载入变量。这个方法显然不行,仅保存变量就必须在inference的时候重新定义Graph(定义模型),这样不同的模型代码肯定要修改。即使同一种模型,参数变化了,也需要在代码中有所体现,至少需要一个配置文件来同步,这样就很繁琐了。
2. 使用tf.train.import_meta_graph导入graph信息并创建Saver, 再使用Saver restore变量。相比第一种,不需要重新定义模型,但是为了从graph中找到输入输出的tensor,还是得用graph.get_tensor_by_name()来获取,也就是还需要知道在定义模型阶段所赋予这些tensor的名字。如果创建各模型的代码都是同一个人完成的,还相对好控制,强制这些输入输出的命名都一致即可。如果是不同的开发者,要在创建模型阶段就强制tensor的命名一致就比较困难了。这样就不得不再维护一个配置文件,将需要获取的tensor名称写入,然后从配置文件中读取该参数。

经过上面的分析发现,要实现inference的代码统一,使用原来的方法也是可以的,只不过TensorFlow官方提供了更好的方法,并且这个方法不仅仅是解决这个问题,所以还是得学习使用saved_model这个模块。

saved_model 保存/载入模型

先列出会用到的API

class tf.saved_model.builder.SavedModelBuilder

# 初始化方法
__init__(export_dir)

# 导入graph与变量信息 
add_meta_graph_and_variables(
    sess,
    tags,
    signature_def_map=None,
    assets_collection=None,
    legacy_init_op=None,
    clear_devices=False,
    main_op=None
)

# 载入保存好的模型
tf.saved_model.loader.load(
    sess,
    tags,
    export_dir,
    **saver_kwargs
)
 
 

(1) 最简单的场景,只是保存/载入模型

保存

要保存一个已经训练好的模型,使用下面三行代码就可以了。

builder = tf.saved_model.builder.SavedModelBuilder(saved_model_dir)
builder.add_meta_graph_and_variables(sess, ['tag_string'])
builder.save()
 
 

首先构造SavedModelBuilder对象,初始化方法只需要传入用于保存模型的目录名,目录不用预先创建。

add_meta_graph_and_variables方法导入graph的信息以及变量,这个方法假设变量都已经初始化好了,对于每个SavedModelBuilder这个方法一定要执行一次用于导入第一个meta graph。

第一个参数传入当前的session,包含了graph的结构与所有变量。

第二个参数是给当前需要保存的meta graph一个标签,标签名可以自定义,在之后载入模型的时候,需要根据这个标签名去查找对应的MetaGraphDef,找不到就会报如RuntimeError: MetaGraphDef associated with tags 'foo' could not be found in SavedModel这样的错。标签也可以选用系统定义好的参数,如tf.saved_model.tag_constants.SERVINGtf.saved_model.tag_constants.TRAINING

save方法就是将模型序列化到指定目录底下。

保存好以后到saved_model_dir目录下,会有一个saved_model.pb文件以及variables文件夹。顾名思义,variables保存所有变量,saved_model.pb用于保存模型结构等信息。

载入

使用tf.saved_model.loader.load方法就可以载入模型。如

meta_graph_def = tf.saved_model.loader.load(sess, ['tag_string'], saved_model_dir)
 
 
  • 1

第一个参数就是当前的session,第二个参数是在保存的时候定义的meta graph的标签,标签一致才能找到对应的meta graph。第三个参数就是模型保存的目录。

load完以后,也是从sess对应的graph中获取需要的tensor来inference。如

x = sess.graph.get_tensor_by_name('input_x:0')
y = sess.graph.get_tensor_by_name('predict_y:0')

# 实际的待inference的样本
_x = ... 
sess.run(y, feed_dict={x: _x})
 
 

这样和之前的第二种方法一样,也是要知道tensor的name。那么如何可以在不知道tensor name的情况下使用呢? 那就需要给add_meta_graph_and_variables方法传入第三个参数,signature_def_map

(2) 使用SignatureDef

关于SignatureDef我的理解是,它定义了一些协议,对我们所需的信息进行封装,我们根据这套协议来获取信息,从而实现创建与使用模型的解耦。SignatureDef的结构以及相关详细的文档在:https://github.com/tensorflow/serving/blob/master/tensorflow_serving/g3doc/signature_defs.md

相关API

# 构建signature
tf.saved_model.signature_def_utils.build_signature_def(
    inputs=None,
    outputs=None,
    method_name=None
)

# 构建tensor info 
tf.saved_model.utils.build_tensor_info(tensor)
 
 

SignatureDef,将输入输出tensor的信息都进行了封装,并且给他们一个自定义的别名,所以在构建模型的阶段,可以随便给tensor命名,只要在保存训练好的模型的时候,在SignatureDef中给出统一的别名即可。

TensorFlow的关于这部分的例子中用到了不少signature_constants,这些constants的用处主要是提供了一个方便统一的命名。在我们自己理解SignatureDef的作用的时候,可以先不用管这些,遇到需要命名的时候,想怎么写怎么写。

保存

假设定义模型输入的别名为“input_x”,输出的别名为“output” ,使用SignatureDef的代码如下

builder = tf.saved_model.builder.SavedModelBuilder(saved_model_dir)
# x 为输入tensor, keep_prob为dropout的prob tensor 
inputs = {'input_x': tf.saved_model.utils.build_tensor_info(x), 
            'keep_prob': tf.saved_model.utils.build_tensor_info(keep_prob)}

# y 为最终需要的输出结果tensor 
outputs = {'output' : tf.saved_model.utils.build_tensor_info(y)}

signature = tf.saved_model.signature_def_utils.build_signature_def(inputs, outputs, 'test_sig_name')

builder.add_meta_graph_and_variables(sess, ['test_saved_model'], {'test_signature':signature})
builder.save()
 
 

上述inputs增加一个keep_prob是为了说明inputs可以有多个, build_tensor_info方法将tensor相关的信息序列化为TensorInfo protocol buffer。

inputs,outputs都是dict,key是我们约定的输入输出别名,value就是对具体tensor包装得到的TensorInfo。

然后使用build_signature_def方法构建SignatureDef,第三个参数method_name暂时先随便给一个。

创建好的SignatureDef是用在add_meta_graph_and_variables的第三个参数signature_def_map中,但不是直接传入SignatureDef对象。事实上signature_def_map接收的是一个dict,key是我们自己命名的signature名称,value是SignatureDef对象。

载入

载入与使用的代码如下


## 略去构建sess的代码

signature_key = 'test_signature'
input_key = 'input_x'
output_key = 'output'

meta_graph_def = tf.saved_model.loader.load(sess, ['test_saved_model'], saved_model_dir)
# 从meta_graph_def中取出SignatureDef对象
signature = meta_graph_def.signature_def

# 从signature中找出具体输入输出的tensor name 
x_tensor_name = signature[signature_key].inputs[input_key].name
y_tensor_name = signature[signature_key].outputs[output_key].name

# 获取tensor 并inference
x = sess.graph.get_tensor_by_name(x_tensor_name)
y = sess.graph.get_tensor_by_name(y_tensor_name)

# _x 实际输入待inference的data
sess.run(y, feed_dict={x:_x})
 
 

从上面两段代码可以知道,我们只需要约定好输入输出的别名,在保存模型的时候使用这些别名创建signature,输入输出tensor的具体名称已经完全隐藏,这就实现创建模型与使用模型的解耦。

文章最后发布于: 2017-07-17 00:09:02
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
大学生参加学科竞赛有着诸多好处,不仅有助于个人综合素质的提升,还能为未来职业发展奠定良好基础。以下是一些分析: 首先,学科竞赛是提高专业知识和技能水平的有效途径。通过参与竞赛,学生不仅能够深入学习相关专业知识,还能够接触到最新的科研成果和技术发展趋势。这有助于拓展学生的学科视野,使其对专业领域有更深刻的理解。在竞赛过程中,学生通常需要解决实际问题,这锻炼了他们独立思考和解决问题的能力。 其次,学科竞赛培养了学生的团队合作精神。许多竞赛项目需要团队协作来完成,这促使学生学会有效地与他人合作、协调分工。在团队合作中,学生们能够学到如何有效沟通、共同制定目标和分工合作,这对于日后进入职场具有重要意义。 此外,学科竞赛是提高学生综合能力的一种途径。竞赛项目通常会涉及到理论知识、实际操作和创新思维等多个方面,要求参赛者具备全面的素质。在竞赛过程中,学生不仅需要展现自己的专业知识,还需要具备创新意识和解决问题的能力。这种全面的综合能力培养对于未来从事各类职业都具有积极作用。 此外,学科竞赛可以为学生提供展示自我、树立信心的机会。通过比赛的舞台,学生有机会展现自己在专业领域的优势,得到他人的认可和赞誉。这对于培养学生的自信心和自我价值感非常重要,有助于他们更加积极主动地投入学习和未来的职业生涯。 最后,学科竞赛对于个人职业发展具有积极的助推作用。在竞赛中脱颖而出的学生通常能够引起企业、研究机构等用人单位的关注。获得竞赛奖项不仅可以作为个人履历的亮点,还可以为进入理想的工作岗位提供有力的支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值