最大连续子序列 hdoj1231

/*
最大连续子序列
Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 24422    Accepted Submission(s): 10953


Problem Description
给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ...,
Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个,
例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和
为20。
在今年的数据结构考卷中,要求编写程序得到最大和,现在增加一个要求,即还需要输出该
子序列的第一个和最后一个元素。
 

Input
测试输入包含若干测试用例,每个测试用例占2行,第1行给出正整数K( < 10000 ),第2行给出K个整数,中间用空格分隔。当K为0时,输入结束,该用例不被处理。

Output
对每个测试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元
素,中间用空格分隔。如果最大连续子序列不唯一,则输出序号i和j最小的那个(如输入样例的第2、3组)。若所有K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。
 

Sample Input

6
-2 11 -4 13 -5 -2
10
-10 1 2 3 4 -5 -23 3 7 -21
6
5 -8 3 2 5 0
1
10
3
-1 -5 -2
3
-1 0 -2
0


 

Sample Output

20 11 13
10 1 4
10 3 5
10 10 10
0 -1 -2

0 0 0





#include <stdio.h>
#define M_ax 10100
int s[M_ax];
int main()
{
	int n;
	while(scanf("%d",&n) && n!=0)
	{
		int i;
		int d = -1000000;
		int sum = -1;
		int lef,rig,t;
		lef = rig = s[0];
		for(i=0;i<n;i++)
		{
			scanf("%d",&s[i]);
			if(d<0)
			{
				d = s[i];
				t = s[i];
			}
			else
			{
				d += s[i];
			}
			if(d>sum)
			{
				sum = d;
				lef = t;
				rig = s[i];
			} 
		}
		if(sum==0)
		{
			printf("0 0 0\n");
		}
		else if(sum<0)  
        {  
            printf("0 %d %d\n",s[0],s[n-1]);  
        } 
		else
		{
			printf("%d %d %d\n",sum,lef,rig);  
		} 
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值