1:无符号数:整个机器字长的全部二进制位均表示数值位
有符号数:二进制数的最高位为符号位,0表示正号,1表示符号
1) 原码:数值部分与真值相同
2) 补码:负数时,补码为原码自低位向高位,维数的第一个1及其右部的0保持不变,左部的各位取反,符号位保持不变
3) 反码:与补码的区别是少加一个1
补码负数范围较正数范围宽,能多表示一个最负的数
2:机器数的表示法
1) 定点表示法 包括定点小数和定点整数
2) 浮点表示法 N = M * r^E
M为尾数,E为阶码(阶码一般用移码表示法表示【需要一个偏置值】)
格式:es(阶码的符号位) e(k位) ms(尾数的符号位) m(n位)
规范化格式:尾数的最高数位必须是一个有效值
3:非数值数据的表示
1) ASCII字符编码
字符串的存放(向量法,串表法)
2) 汉字 国标码,区位码,机内码,字形码
4:十进制数的编码 8421码,2421码,余3码,Gray码
十进制数串
1) 非压缩:一个字节存储一个数字
前分隔式数字串,符号位在第一个字节,+2BH -2DH
后嵌入式数字串,+(30H-39H) -(70H-79H)
2) 压缩:一个字节存储两个数字
符号位放在最低数值位之后 +CH -DH
5:数据校验码:指那些能够发现错误或者能够自动纠正错误的数据编码
码距:任意两个码字之间最少变化的二进制位
1)奇偶检验:若干有效信息位+二进制位(检验位)组成校验码
奇偶表明整个校验码中1的奇偶性
2)海明检验码
检验位的位数K与信息位的位数N应该满足:2^(k-1)>=N+k+1
注意:检验码的形成过程以及检验过程
3)循环冗余校验码(产生多项式)
将原码M(x)左移k位,选择一个k+1位的产生多项式G(x),对M(x)*x^k作模2除,得到余数R(x),则M(x)与R(x)拼接形成循环冗余校验码