- 博客(20)
- 收藏
- 关注
原创 Datawhale AI夏令营--2024大运河杯”数据开发应用创新大赛——城市治理Task3
在YOLOv5及其后续版本中,imgsz可以被设置为一个整数,用于训练和验证模式,表示将输入图像调整为正方形的尺寸,例如imgsz=640意味着图像将被调整为640x640像素。对于预测和导出模式,imgsz可以被设置为一个列表,包含宽度和高度,例如imgsz=[640, 480],表示图像将被调整为640像素宽和480像素高。YOLO 模型的训练设置包括多种超参数和配置,这些设置会影响模型的性能、速度和准确性。但是,由于您的模型已经从以前的数据集中学习了一些特征,因此立即从更高的学习率开始可能更有益。
2024-08-30 18:25:59 341
原创 Datawhale AI夏令营--2024大运河杯”数据开发应用创新大赛——城市治理Task2
在YOLO的训练过程中,这样的配置文件允许用户轻松地指定数据集的位置和类别信息,从而无需硬编码在训练脚本中。在使用YOLO进行训练时,生成的exp/detect/train类型的文件夹是训练过程中的一个关键组成部分。不同权重下,较多参数的模型通常能有更好的 精度,但是与之伴随的是速度和过拟合风险。尝试了一下s版本的,结果还行,到了0.08。
2024-08-27 17:21:42 283
原创 Datawhale AI夏令营--2024大运河杯”数据开发应用创新大赛——城市治理Task1
YOLO,全称为“You Only Look Once”(你只看一眼),是一种流行的实时目标检测系统,由Joseph Redmon等人在2015年提出。YOLO模型的核心思想是将目标检测任务视为一个单一的回归问题,通过一个卷积神经网络(CNN)直接从图像像素到边界框坐标和类别概率的映射。YOLO模型经过了多次迭代,包括YOLOv2(YOLO9000)、YOLOv3和YOLOv4等版本,每个版本都在性能和速度上有所提升,同时也引入了一些新的技术,如更深的网络结构、更好的锚框机制、多尺度特征融合等。
2024-08-25 15:35:14 278
原创 催化反应产率预测赛题--Datawhale AI夏令营
碳氮成键反应、Diels-Alder环加成反应等一系列催化合成反应,被广泛应用于各类药物的生产合成中。研究人员与产业界在针对特定反应类型开发新的催化合成方法时,往往追求以高产率获得目标产物,也即开发高活性的催化反应体系,以提升原子经济性,减少资源的浪费与环境污染。然而,开发具有高活性的催化反应体系通常需要对包括催化剂和溶剂在内的多种反应条件进行详尽的探索,这导致了它成为了一项极为耗时且资源密集的任务。这要求对包括催化剂和溶剂在内的多种反应条件进行详尽的探索。
2024-07-28 17:24:07 1500
原创 抽象主义-冲刺计划
大部分成员比较有编程经验和项目经验,对自身有清晰的认识,对相关技术有一定的了解和实践经验。有积极地合作意愿,能够按时完成自己的任务。脚踏实地,实事求是。愿意走出技术的舒适区,积极地学习新的技术并予以实践。
2022-11-25 22:21:52 266
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人