Flink+Iceberg环境搭建爬坑指南

本文详细介绍了如何在Flink环境中搭建和使用Apache Iceberg,包括安装步骤、创建Catalog、表的创建与插入数据,以及Iceberg的文件结构和组件介绍。特别强调了对Flink和Hive版本的兼容性问题,以及IcebergStreamWriter和IcebergFilesCommitter的角色。此外,还展示了如何通过Flink SQL和代码操作Iceberg表。
摘要由CSDN通过智能技术生成

Iceberg简介

最近在调研Iceberg技术栈,爬过无数坑之后终于搭建运行起来。 记录一下。

Apache Iceberg 是一种用于大型分析数据集的开放表格式。Iceberg 向 Trino 和 Spark 添加了使用高性能格式的表,就像 SQL 表一样。
https://github.com/apache/iceberg
在这里插入图片描述
Iceberg文件结果主要分为data和metadata两部分。data存放具体的数据文件,目前支持orc、avro、parquet三种格式。
metadata存放文件的元数据,主要包块表元数据和快照、manifest清单、manifest。

在这里插入图片描述

安装

本次主要基于flink+iceberg进行环境搭建。

1.安装flink

安装并启动hadoop、hive等相关环境。

下载flink安装包,解压后安装
下载地址: https://archive.apache.org/dist/flink/flink-1.11.3/

wget https://downloads.apache.org/flink/flink-1.11.1/flink-1.11.1-bin-scala_2.12.tgz
tar xzvf flink-1.11.1-bin-scala_2.12.tgz

导入hadoop的环境包,flink-sql会使用到hdfs和hive等相关依赖包进行通讯。
export HADOOP_CLASSPATH=$HADOOP_HOME/bin/hadoop classpath

启动flink集群
./bin/start-cluster.sh

注:这里会遇到第一个坑,iceberg-0.11.1支持的是flink1.11的版本,如果使用过高的版本,会报一堆找不到类和方法的异常(因为flink1.12版本删掉了许多API)。 请使用Flink1.11.x版本进行安装。

2、下载Iceberg环境包

主要是/iceberg-flink-runtime-xxx.jar和flink-sql-connector-hive-2.3.6_2.11-1.11.0.jar两个jar包。
下载地址: https://repo.maven.apache.org/maven2/org/apache/iceberg/iceberg-flink-runtime/0.11.1/
https://mvnrepository.com/artifact/org.apache.flink/flink-connector-hive

3、启动Flink-sql

执行命令启动flink-sql。
./bin/sql-client.sh embedded
-j /iceberg-flink-runtime-xxx.jar
-j /flink-sql-connector-hive-2.3.6_2.11-1.11.0.jar
shell
在这里插入图片描述

4、创建Catalog

flink支持hadoop、hive、自定义三种Catalog。这里以Hive为例。

注:这里会遇到第二个坑,iceberg和flink当前版本支持的是hive2.3.x的版本,推荐安装hive2.3.8版本。不然也会遇到一堆找不到方法和类的异常。

执行命令,创建hive类型的Catalog。

CREATE CATALOG hive_catalog WITH (
  'type'='iceberg',
  'catalog-type'='hive',
  'uri'='thrift://server1:9083',
  'clients'='5',
  'property-version'='1',
  'warehouse'='hdfs://server1/user/hive/warehouse'
);

创建成功后的提示
创建成功后的提示

5、创建表

创建DataBase:

create iceberg_db;
use iceberg_db;

创建表:

CREATE TABLE test (
    id BIGINT COMMENT 'unique id',
    busi_date STRING
) 

6、插入数据和Flink任务执行情况

执行sql插入数据。
在这里插入图片描述
可以在Flink任务中看到相应的Job。
在这里插入图片描述
在这里插入图片描述

7、Iceberg组件介绍

在这里插入图片描述

IcebergStreamWriter

主要用来写入记录到对应的 avro、parquet、orc 文件,生成一个对应的 Iceberg DataFile,并发送给下游算子。
另外一个叫做 IcebergFilesCommitter,主要用来在 checkpoint 到来时把所有的 DataFile 文件收集起来,并提交 Transaction 到 Apache Iceberg,完成本次 checkpoint 的数据写入,生成 DataFile。

IcebergFilesCommitter

为每个 checkpointId 维护了一个 DataFile 文件列表,即 map,这样即使中间有某个 checkpoint 的 transaction 提交失败了,它的 DataFile 文件仍然维护在 State 中,依然可以通过后续的 checkpoint 来提交数据到 Iceberg 表中。

在Flink的任务日志中,可以看到对应IcebergStreamWriter和IcebergFilesCommitter的信息,以及snap的ID(3509023638495847835)。
在这里插入图片描述

8、Iceberg文件结构介绍

在HDFS系统中观察Iceberg的整个目录结构,可以看到分为data和metadata两个目录,对应开篇介绍的Iceberg文件结构。
下图中可看到Iceberg文件包含了数据文件、元数据和快照、manifest清单和manifest。
在这里插入图片描述

观察Iceberg的表元数据文件

hadoop dfs text /user/iceberg_hive/warehouse/iceberg_db.db/test/metadata/00004-afffb920-e788-437e-80f0-4187a42ae74b.metadata.json在这里插入图片描述
可以看到对应的快照信息,表的版本、更新时间戳、manifest清单文件地址等信息。
具体的字段描述可以参考官网介绍:https://iceberg.apache.org/spec/#iceberg-table-spec

这里可以看到刚刚Flink任务插入的快照信息(3509023638495847835)
在这里插入图片描述

观察manifest清单和manifest文件

在这里插入图片描述

9、分区表

采集分区表并插入数据。

CREATE TABLE t_partition (
    id BIGINT COMMENT 'unique id',
    busi_date STRING
) PARTITIONED BY (busi_date);

在这里插入图片描述
可以看到表文件通过分区目录进行了划分,提高查询效率。
在这里插入图片描述

10、Iceberg执行计划

在这里插入图片描述

11、通过Flink代码的方式操作Iceberg

package com.hyr.flink.iceberg

import org.apache.flink.configuration.{Configuration, RestOptions}
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment

/** *****************************************************************************
 * @date 2021-06-04 10:31 上午
 * @author: <a href=mailto:huangyr>huangyr</a>
 * @Description: Apache Iceberg
 * **************************************************************************** */
object IcebergDemo {

  def main(args: Array[String]): Unit = {
    val conf: Configuration = new Configuration()
    // 自定义web端口
    conf.setInteger(RestOptions.PORT, 9000)
    val streamEnv: StreamExecutionEnvironment = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(conf)
    streamEnv.setParallelism(1)
    val tenv = StreamTableEnvironment.create(streamEnv)

    // add hadoop config file
    tenv.executeSql("CREATE CATALOG hive_catalog WITH (\n  'type'='iceberg',\n  'catalog-type'='hive',\n  'uri'='thrift://server1:9083',\n  'clients'='5',\n  'property-version'='1',\n  'warehouse'='hdfs://server1:8020/user/hive/warehouse'\n)");

    tenv.useCatalog("hive_catalog");
    tenv.executeSql("show databases").print()
    tenv.useDatabase("iceberg_db")
    tenv.executeSql("show tables").print()

    tenv.executeSql("select id from test").print() // TODO iceberg和flink版本不兼容 等待后续iceberg版本修复
  }

}

参考代码Github地址:
https://github.com/huangyueranbbc/FlinkDemo

完整的一个表元数据信息文件:
{
  "format-version" : 1,
  "table-uuid" : "cfa12929-0f4c-475c-aca0-7c9cc411a1ac",
  "location" : "hdfs://master/user/iceberg_hive/warehouse/iceberg_db.db/test",
  "last-updated-ms" : 1622771727393,
  "last-column-id" : 2,
  "schema" : {
    "type" : "struct",
    "fields" : [ {
      "id" : 1,
      "name" : "id",
      "required" : false,
      "type" : "long"
    }, {
      "id" : 2,
      "name" : "data",
      "required" : false,
      "type" : "string"
    } ]
  },
  "partition-spec" : [ ],
  "default-spec-id" : 0,
  "partition-specs" : [ {
    "spec-id" : 0,
    "fields" : [ ]
  } ],
  "default-sort-order-id" : 0,
  "sort-orders" : [ {
    "order-id" : 0,
    "fields" : [ ]
  } ],
  "properties" : { },
  "current-snapshot-id" : 555628243696744305,
  "snapshots" : [ {
    "snapshot-id" : 8531001366494199026,
    "timestamp-ms" : 1622770732247,
    "summary" : {
      "operation" : "append",
      "flink.job-id" : "371316a9b274ff09f85957afe730e25d",
      "flink.max-committed-checkpoint-id" : "9223372036854775807",
      "added-data-files" : "1",
      "added-records" : "1",
      "added-files-size" : "637",
      "changed-partition-count" : "1",
      "total-records" : "1",
      "total-data-files" : "1",
      "total-delete-files" : "0",
      "total-position-deletes" : "0",
      "total-equality-deletes" : "0"
    },
    "manifest-list" : "hdfs://master/user/iceberg_hive/warehouse/iceberg_db.db/test/metadata/snap-8531001366494199026-1-63278140-aca4-4cd7-bffc-1e7d0e4b4b1b.avro"
  }, {
    "snapshot-id" : 626484522728673979,
    "parent-snapshot-id" : 8531001366494199026,
    "timestamp-ms" : 1622770733546,
    "summary" : {
      "operation" : "append",
      "flink.job-id" : "bbdcfb52195a0b0b556c6a167fc3de9f",
      "flink.max-committed-checkpoint-id" : "9223372036854775807",
      "added-data-files" : "1",
      "added-records" : "1",
      "added-files-size" : "636",
      "changed-partition-count" : "1",
      "total-records" : "2",
      "total-data-files" : "2",
      "total-delete-files" : "0",
      "total-position-deletes" : "0",
      "total-equality-deletes" : "0"
    },
    "manifest-list" : "hdfs://master/user/iceberg_hive/warehouse/iceberg_db.db/test/metadata/snap-626484522728673979-1-a79e0789-dbc0-4a45-b57d-73575cdccb1d.avro"
  }, {
    "snapshot-id" : 4382866461439510817,
    "parent-snapshot-id" : 626484522728673979,
    "timestamp-ms" : 1622770735121,
    "summary" : {
      "operation" : "append",
      "flink.job-id" : "947829c23ca09fba470204f5b146c191",
      "flink.max-committed-checkpoint-id" : "9223372036854775807",
      "added-data-files" : "1",
      "added-records" : "1",
      "added-files-size" : "637",
      "changed-partition-count" : "1",
      "total-records" : "3",
      "total-data-files" : "3",
      "total-delete-files" : "0",
      "total-position-deletes" : "0",
      "total-equality-deletes" : "0"
    },
    "manifest-list" : "hdfs://master/user/iceberg_hive/warehouse/iceberg_db.db/test/metadata/snap-4382866461439510817-1-1d78fbb1-7c97-4c3a-b47d-deef81273d0e.avro"
  }, {
    "snapshot-id" : 555628243696744305,
    "parent-snapshot-id" : 4382866461439510817,
    "timestamp-ms" : 1622771727393,
    "summary" : {
      "operation" : "append",
      "flink.job-id" : "f30e7cd040204f737ba8aaf0350340f7",
      "flink.max-committed-checkpoint-id" : "9223372036854775807",
      "added-data-files" : "1",
      "added-records" : "1",
      "added-files-size" : "637",
      "changed-partition-count" : "1",
      "total-records" : "4",
      "total-data-files" : "4",
      "total-delete-files" : "0",
      "total-position-deletes" : "0",
      "total-equality-deletes" : "0"
    },
    "manifest-list" : "hdfs://master/user/iceberg_hive/warehouse/iceberg_db.db/test/metadata/snap-555628243696744305-1-194acdcb-abdf-4acd-8bc1-5de6d4bb76b0.avro"
  } ],
  "snapshot-log" : [ {
    "timestamp-ms" : 1622770732247,
    "snapshot-id" : 8531001366494199026
  }, {
    "timestamp-ms" : 1622770733546,
    "snapshot-id" : 626484522728673979
  }, {
    "timestamp-ms" : 1622770735121,
    "snapshot-id" : 4382866461439510817
  }, {
    "timestamp-ms" : 1622771727393,
    "snapshot-id" : 555628243696744305
  } ],
  "metadata-log" : [ {
    "timestamp-ms" : 1622770665028,
    "metadata-file" : "hdfs://master/user/iceberg_hive/warehouse/iceberg_db.db/test/metadata/00000-8bec1008-0d2d-4dac-82a6-387d9354b2bc.metadata.json"
  }, {
    "timestamp-ms" : 1622770732247,
    "metadata-file" : "hdfs://master/user/iceberg_hive/warehouse/iceberg_db.db/test/metadata/00001-66552574-1458-40a6-8ebc-2d5f2c58a65e.metadata.json"
  }, {
    "timestamp-ms" : 1622770733546,
    "metadata-file" : "hdfs://master/user/iceberg_hive/warehouse/iceberg_db.db/test/metadata/00002-1b1fb277-d165-46cd-a3ee-f2b6c358213f.metadata.json"
  }, {
    "timestamp-ms" : 1622770735121,
    "metadata-file" : "hdfs://master/user/iceberg_hive/warehouse/iceberg_db.db/test/metadata/00003-56ffa5b6-bac5-4a1b-9e8d-2f36fe379610.metadata.json"
  } ]
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值