这个经过大神同学的指导啊。终于回了啊。
前缀数组+二分+判重
浪费的+需要的比总值还多就Break
就是这么多啦。
提交传送门
Description
农夫约翰打算建立一个栅栏将他的牧场给围起来,因此他需要一些特定规格的木材。于是农夫约翰到木材店购买木材。可是木材店老板说他这里只剩下少部分大规格的木板了。不过约翰可以购买这些木板,然后切割成他所需要的规格。而且约翰有一把神奇的锯子,用它来锯木板,不会产生任何损失,也就是说长度为10的木板可以切成长度为8和2的两个木板。你的任务:给你约翰所需要的木板的规格,还有木材店老板能够给出的木材的规格,求约翰最多能够得到多少他所需要的木板。
Input
第一行为整数m(m<= 50)表示木材店老板可以提供多少块木材给约翰。紧跟着m行为老板提供的每一块木板的长度。接下来一行(即第m+2行)为整数n(n <= 1000),表示约翰需要多少木材。接下来n行表示他所需要的每一块木板的长度。木材的规格小于32767。(对于店老板提供的和约翰需要的每块木板,你只能使用一次)。
Output
只有一行,为约翰最多能够得到的符合条件的木板的个数。
Sample Input
4
30
40
50
25
10
15
16
17
18
19
20
21
25
24
30
Sample Output
7
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m,l,r,mid,ans,d,sum;
int a[11000],b[11000],v[10100];
bool dfs(int k,int t){
if(k==0)return true;
if(d+v[mid]>sum)return false;
bool bk;
for(int i=t;i<=m;i++){
if(b[i]>=a[k]){
b[i]-=a[k];
if(b[i]<a[1])d+=b[i];
if(a[k-1]==a[k])bk=dfs(k-1,i);
else bk=dfs(k-1,1);
if(b[i]<a[1])d-=b[i];
b[i]+=a[k];
if(bk==true)return true;
}
}
return false;
}
int main(){
sum=0;
scanf("%d",&m);
for(int i=1;i<=m;i++){
scanf("%d",&b[i]);sum+=b[i];
}
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
sort(a+1,a+n+1);sort(b+1,b+m+1);
v[0]=0;for(int i=1;i<=n;i++)v[i]=v[i-1]+a[i];
while(v[n]>sum)n--;
l=1;r=n;ans=0;d=0;
while(l<=r){
mid=(l+r)/2;
if(dfs(mid,1)==true){
l=mid+1;ans=mid;
}
else r=mid-1;
}
printf("%d\n",ans);
return 0;
}