二叉排序树,又称二叉查找树。它或者是一颗空树,或者是具有下列性质的二叉树。
(1) 若他的左子树不为空,则左子树上所有结点的值均小于他的根结点的值。
(2) 若他的右子树不为空,则右子树上所有结点的值均大于他的根结点的值。
(3) 他的左右子树也分别是二叉排序树。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std;
typedef struct BiTNode
{
int data;
struct BiTNode *lchild,*rchild;
}BiTNode,*BiTree;
bool SearchBST(BiTree T,int key,BiTree f,BiTree *p)
{
if(!T)//查找不成功
{
*p=f;
return false;
}
else if(key==T->data)//查找成功
{
*p=T;
return true;
}
else if(key<T->data)//查找左子树
return SearchBST(T->lchild,key,T,p);
else//查找右子树
return SearchBST(T->rchild,key,T,p);
}
bool InsertBST(BiTree *T,int key)
{
BiTree p,s;
if(!SearchBST(*T,key,NULL,&p))
{
s=(BiTree)malloc(sizeof(BiTNode));
s->data=key;
s->lchild=s->rchild=NULL;
if(!p)//该树为空树,s为根节点
*T=s;
else if(key<p->data)
p->lchild=s;//s为左孩子
else
p->rchild=s;//s为右孩子
return true;
}
return false; //已存在该节点
}
/*从二叉排序树中删除节点p,并重新接上他的左、右子树*/
bool Delete(BiTree *p)
{
BiTree q,s;
if((*p)->rchild==NULL)//右子树为空,只需要重接他的左子树
{
q=*p;
*p=(*p)->lchild;
free(q);
}
else if((*p)->lchild==NULL)//左子树为空,只需要重接他的右子树
{
q=*p;
*p=(*p)->rchild;
free(q);
}
else//左右子树均不为空
{
q=*p;
s=(*p)->lchild;
while(s->rchild)//转左,然后向右走到尽头,找p的前驱。
{
q=s;
s=s->rchild;
}
(*p)->data=s->data;//s指向被删结点的直接前驱,然后用s来替换p
if(q!=*p)//如果p,q指向不同的结点,则表明s结点下面还有右子树。
q->rchild=s->lchild;//重接q的右子树。
else
q->lchild=s->lchild;//重接q的左子树。
free(s);
}
return true;
}
bool DeleteBST(BiTree *T,int key)
{
if(!*T)//查找不成功
{
return false;
}
else if(key==(*T)->data)//查找成功
{
return Delete(T);
}
else if(key<(*T)->data)//查找左子树
return DeleteBST(&(*T)->lchild,key);
else//查找右子树
return DeleteBST(&(*T)->rchild,key);
}
void InOrderTraverse(BiTree T)//中序遍历
{
if(T==NULL)
return;
InOrderTraverse(T->lchild);
printf("%d ",T->data);
InOrderTraverse(T->rchild);
}
int main()
{
int a[]={62,88,58,47,35,73,51,99,37,93};
BiTree T=NULL;
for(int i=0;i<10;i++)
InsertBST(&T,a[i]);
InOrderTraverse(T);
cout<<endl;
cout<<"请输入要插入的数据"<<endl;
int key;
cin>>key;
if(InsertBST(&T,key))
{
cout<<"插入成功"<<endl;
InOrderTraverse(T);
cout<<endl;
}
else
cout<<"插入失败"<<endl;
cout<<"请输入要删除的数据"<<endl;
cin>>key;
if(DeleteBST(&T,key))
{
cout<<"删除成功"<<endl;
InOrderTraverse(T);
cout<<endl;
}
else
cout<<"删除失败"<<endl;
return 0;
}