2022牛客算法基础集训营3:智乃的数字积木

该博客讨论了一种涉及积木排列和颜色变化的问题。给定N块颜色和数字的积木,允许进行k次颜色操作,每次操作将一种颜色替换为另一种颜色。题目要求在每次操作后找到能排列的最大数字。解决方案包括对不同颜色的积木进行标记和排序,然后计算排序后的最大数字。代码中展示了如何实现这个过程,包括对颜色数组进行切段和排序,以及更新颜色后重新计算最大数字。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目传送门

题目大意:

有N块积木,每一块积木都有自己的颜色以及数字,这N块积木颜色的范围从1到M,有k次操作,每次操作可以把一种颜色换成另外一种颜色,相邻而相同颜色的积木可以互换位置,求每次染色操作后所能排列的积木的最大数字。

思路分析:

对于染色前的操作,只需要把不同颜色的积木进行标记,并把每段相同颜色的积木上的数字排序后即可得到最大的数字。

因此我们可以开一个数组记录原始积木的数字,在另外开一个数组记录相应的颜色,每种颜色的下标对于其相应颜色的下标。之后只需要对颜色的数组进行切段并记录下其相应的下标的位置,之后对数字数组相应的部分进行排序之后输出即可。

代码:

 

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
#include<queue>
#define INF 0x3f3f3f
#define ll long long
#define fre() freopen(".in", "r", stdin);freopen(".out", "w", stdout);
using namespace std;
inline int read()
{
	int x = 0, f = 1;
	char ch = getchar();
	while (ch < '0' || ch > '9')
	{
		if (ch == '-')f = -1;
		ch = getchar();
	}
	while (ch >= '0' && ch <= '9')
	{
		x = (x << 1) + (x << 3) + (ch ^ 48);
		ch = getchar();
	}
	return x * f;
}
const double eps = 1e-6;
const int N = 1e5 + 10;
const int mod = 1e9 + 7;
int col[N];
char s[N];
int n, m, k;
ll max_num()
{
	for (int l = 1, r = 1; l <= n; l = r + 1, r = l)//数组分区切段
	{
		while (r < n && (col[l] == col[r + 1]))r++;
		sort(s + l, s + r + 1, [](const char &a, const char &b)//对切段的数组进行排序
		{
			return a > b;
		});
	}
	ll sum = 0;
	for (int i = 1; i <= n; i++)//将字符串转换为整数
	{
		sum = sum * 10 + (s[i] - '0');
		sum %= mod;
	}
	return sum;
}

void s_col(int x, int y)//变更颜色
{
	for (int i = 1; i <= n; i++)
	{
		if (col[i] == x)
			col[i] = y;
	}
	return ;
}
int main()
{

	n = read();
	m = read();
	k = read();
	scanf("%s", s + 1);
	for (int i = 1; i <= n; i++)col[i] = read();
	cout << max_num() << endl;
	while (k--)
	{
		int p, q;
		p = read();
		q = read();
		s_col(p, q);
		cout << max_num() << endl;
	}
	return 0;
}

### 关于2020年寒假算法基础集训营中的欧几里得算法 在2020年的寒假算法基础集训营中,确实存在涉及欧几里得算法的相关题目。具体来说,在第四场竞赛的第一题即为“A. 欧几里得”,该题目的核心在于利用扩展欧几里得定理来解决问题[^5]。 #### 扩展欧几里得算法简介 扩展欧几里得算法主要用于求解形如 ax + by = gcd(a, b) 的线性不定方程的一组特解(x,y),其中gcd表示最大公约数。此方法不仅能够计算两个整数的最大公因数,还能找到满足上述条件的具体系数x和y。 对于给定的数据范围较小的情况可以直接通过递归来实现;而对于较大数据则需考虑效率优化问题。下面给出了一段基于C++语言编写的用于解决此类问题的模板代码: ```cpp #include<bits/stdc++.h> #define int long long using namespace std; // 定义全局变量存储结果 int x, y; void ex_gcd(int a, int b){ if(b == 0){ x = 1; y = 0; return ; } ex_gcd(b, a % b); int tmp = x; x = y; y = tmp - (a / b) * y; } ``` 这段程序实现了经典的扩展欧几里得算法逻辑,并且可以作为处理类似问题的基础工具函数调用。 #### 实际应用案例分析 回到原题本身,“A. 欧几里得”的解答思路就是先预处理斐波那契数列前若干项数值存入数组`a[]`内以便快速查询,之后针对每一次询问直接输出对应位置处两相邻元素之和即可得出最终答案。这实际上巧妙运用到了广为人知的裴蜀定理——任意一对互质正整数都可由它们自身的倍数组合而成,而这里正是借助了这一性质简化了解决方案的设计过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值