Maximum sum

5 篇文章 0 订阅
描述Given a set of n integers: A={a1, a2,..., an}, we define a function d(A) as below:
                     t1     t2 
         d(A) = max{ ∑ai + ∑aj | 1 <= s1 <= t1 < s2 <= t2 <= n }
                    i=s1   j=s2

Your task is to calculate d(A).输入The input consists of T(<=30) test cases. The number of test cases (T) is given in the first line of the input. 
Each test case contains two lines. The first line is an integer n(2<=n<=50000). The second line contains n integers: a1, a2, ..., an. (|ai| <= 10000).There is an empty line after each case.输出Print exactly one line for each test case. The line should contain the integer d(A).样例输入
1

10
1 -1 2 2 3 -3 4 -4 5 -5
样例输出
13
提示In the sample, we choose {2,2,3,-3,4} and {5}, then we can get the answer.

Huge input,scanf is recommended.来源

POJ Contest,Author:Mathematica@ZSU

大佬的代码链接

#include<bits/stdc++.h>  
using namespace std;  
int n,maxn,a[50001],f[50001],g[50001],F[50001],G[50001];  
main()  
{  
    int t;  
    cin>>t;  
    while(t--)  
    {  
        maxn=-20001;  
        cin>>n>>a[1];  
        int mxf=F[1]=f[1]=a[1];  
        for(int i=2;i<=n;i++)  
        {  
            cin>>a[i];  
            f[i]=a[i]+max(0,f[i-1]);    //找出在a[1]……a[i]序列中以a[i]为结尾的和最大子序列  
            mxf=F[i]=max(mxf,f[i]); //找出在a[1]……a[i]序列中的和最大子序列(不一定包含a[i])  
        }  
        int mxg=G[n]=g[n]=a[n];  
        for(int i=n-1;i>0;i--)  
        {  
            g[i]=a[i]+max(0,g[i+1]);    //找出在a[i]……a[n]序列中以a[i]为开头的和最大子序列  
            mxg=G[i]=max(mxg,g[i]); //找出在a[i]……a[n]序列中的和最大子序列(不一定包含a[i])  
        }  
        for(int i=1;i<n;i++)        //枚举断点  
            if(F[i]+G[i+1]>maxn) //G[i+1]是因为不可有重叠部分  
                maxn=F[i]+G[i+1];  
        cout<<maxn<<endl;  
    }  
}  

//实在是完美。

PS:就是求取左边连续的最大值,右边连续的最大值。

注意F(i)与G(i),分别保存从1到i中不一定包括i的连续最大值,与i到n不一定包括i的连续最大值,

f(i)中保存1到i的以a[i]为结尾的连续和最大子序列和,但是mxf会保存那个较大的,如果当前是负数,那么肯定就还是使用原来的最大值。

### 回答1: 以下是一个经典的 Maximum Sum 子数组问题的动态规划代码: ```python def max_sum_subarray(nums): if not nums: return 0 n = len(nums) dp = [0]*n dp[0] = nums[0] max_sum = nums[0] for i in range(1, n): dp[i] = max(dp[i-1]+nums[i], nums[i]) max_sum = max(max_sum, dp[i]) return max_sum ``` 该算法的时间复杂度为 $O(n)$,其中 $n$ 是数组的长度。 ### 回答2: Maximum sum问题是一个经典的动态规划问题,其目标是在一个给定的数组中找到一个具有最大和的子数组。 在解决这个问题时,可以定义一个一维动态规划数组dp,其中dp[i]表示以第i个元素结尾的子数组的最大和。那么,可以得出动态规划的转移方程如下: dp[i] = max(dp[i-1] + nums[i], nums[i]) 其中,nums表示给定的整数数组。 接下来,可以使用一个变量maxSum来记录所有子数组的最大和。遍历整个数组,更新dp[i]的同时,不断更新maxSum的值,即可得到最终的结果。 下面是该问题的动态规划代码实现: ```python def maxSum(nums): dp = [0] * len(nums) maxSum = float('-inf') dp[0] = nums[0] maxSum = max(maxSum, dp[0]) for i in range(1, len(nums)): dp[i] = max(dp[i-1] + nums[i], nums[i]) maxSum = max(maxSum, dp[i]) return maxSum ``` 该算法的时间复杂度为O(n),其中n为数组的长度。使用动态规划的思想,可以高效地解决Maximum sum问题。 ### 回答3: 动态规划(Dynamic Programming)是一种常用的算法思想,可以解决一些最优化问题。Maximum Sum问题是一种经典的动态规划问题,目标是找出一个数组中最大的子数组和。 要编写Maximum Sum的动态规划代码,可以按照以下步骤进行: 1. 首先定义一个变量max_sum,用于记录当前最大的子数组和,初始化为数组中的第一个元素(即max_sum = arr[0])。 2. 然后定义一个变量cur_sum,用于记录当前的子数组和,初始化为数组中的第一个元素(即cur_sum = arr[0])。 3. 接着,使用一个循环遍历数组中的每一个元素(从第二个元素开始): (1)如果当前子数组和cur_sum加上当前元素arr[i]大于当前元素arr[i]本身,说明加上当前元素后,子数组和变得更大,因此更新cur_sum为cur_sum + arr[i]。 (2)否则,当前元素arr[i]比当前子数组和cur_sum更大,说明当前元素作为新的起点,重新开始构建子数组,即令cur_sum = arr[i]。 (3)将当前子数组和cur_sum与当前最大的子数组和max_sum进行比较,如果cur_sum大于max_sum,则更新max_sum为cur_sum。 4. 最后,返回最大的子数组和max_sum作为最终结果。 下面给出这个算法的代码实现: ```python def maximum_sum(arr): max_sum = arr[0] cur_sum = arr[0] for i in range(1, len(arr)): if cur_sum + arr[i] > arr[i]: cur_sum += arr[i] else: cur_sum = arr[i] if cur_sum > max_sum: max_sum = cur_sum return max_sum ``` 这段代码的时间复杂度为O(n),其中n为数组的长度,因为需要遍历整个数组。在使用动态规划思想解决Maximum Sum问题时,可以通过定义合适的状态和状态转移方程来简化问题,并提高算法的效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值