运行时异常与一般异常有何异同?

Throwable是所有Java程序中错误处理的父类,有两种资类:Error和Exception。

Error:表示由JVM所侦测到的无法预期的错误,由于这是属于JVM层次的严重错误,导致JVM无法继续执行,因此,这是不可捕捉到的,无法采取任何恢复的操作,顶多只能显示错误信息。

Exception:表示可恢复的例外,这是可捕捉到的。

Java提供了两类主要的异常:runtime exception和checked exception。checked 异常也就是我们经常遇到的IO异常,以及SQL异常都是这种异常。对于这种异常,JAVA编译器强制要求我们必需对出现的这些异常进行catch。所以,面对这种异常不管我们是否愿意,只能自己去写一大堆catch块去处理可能的异常。

但是另外一种异常:runtime exception,也称运行时异常,我们可以不处理。当出现这样的异常时,总是由虚拟机接管。比如:我们从来没有人去处理过NullPointerException异常,它就是运行时异常,并且这种异常还是最常见的异常之一。

出现运行时异常后,系统会把异常一直往上层抛,一直遇到处理代码。如果没有处理块,到最上层,如果是多线程就由Thread.run()抛出,如果是单线程就被main()抛出。抛出之后,如果是线程,这个线程也就退出了。如果是主程序抛出的异常,那么这整个程序也就退出了。运行时异常是Exception的子类,也有一般异常的特点,是可以被Catch块处理的。只不过往往我们不对他处理罢了。也就是说,你如果不对运行时异常进行处理,那么出现运行时异常之后,要么是线程中止,要么是主程序终止。

如果不想终止,则必须扑捉所有的运行时异常,决不让这个处理线程退出。队列里面出现异常数据了,正常的处理应该是把异常数据舍弃,然后记录日志。不应该由于异常数据而影响下面对正常数据的处理。在这个场景这样处理可能是一个比较好的应用,但并不代表在所有的场景你都应该如此。如果在其它场景,遇到了一些错误,如果退出程序比较好,这时你就可以不太理会运行时异常,或者是通过对异常的处理显式的控制程序退出。

异常处理的目标之一就是为了把程序从异常中恢复出来。
【基于DQN和PyTorch无人机】【多智能体深度Q学习(MA-DQL)】分布式用户连接最大化在基于无人机的通信网络中研究(Python代码实现)内容概要:本文围绕基于DQN和PyTorch的多智能体深度Q学习(MA-DQL)在无人机通信网络中的应用展开研究,重点解决分布式用户连接最大化问题。通过构建多智能体强化学习模型,利用PyTorch框架实现算法训练仿真,优化无人机作为空中基站的用户接入策略,提升通信网络的覆盖效率资源利用率。文中详细介绍了MA-DQL的网络架构设计、状态-动作空间定义、奖励机制构建及分布式协作机制,并结合Python代码实现验证了方法的有效性优越性。; 适合人群:具备一定深度学习和强化学习基础,熟悉PyTorch框架,从事无线通信、无人机网络或智能优化方向研究的研究生及科研人员。; 使用场景及目标:①应用于无人机辅助的无线通信网络中,实现用户连接的智能调度资源优化;②为多智能体强化学习在分布式决策问题中的落地提供实践参考;③支持科研复现算法改进,推动智能通信网络的发展。; 阅读建议:建议读者结合提供的Python代码进行实践操作,深入理解MA-DQL在实际通信场景中的建模过程,重点关注多智能体间的协同机制奖励函数设计,同可扩展至更复杂的动态环境大规模网络场景中进行验证。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值