莫比乌斯函数学习笔记

本文是关于莫比乌斯函数的学习笔记,详细介绍了其定义,包括当x中有平方因子时μ(x)=0的规则。此外,文章探讨了莫比乌斯函数的积性性质和莫比乌斯反演,指出莫比乌斯函数在狄利克雷卷积中的应用及其在解决数学问题时的重要性。
摘要由CSDN通过智能技术生成

莫比乌斯函数学习笔记

莫比乌斯环是非常重要的

莫比乌斯函数是数论中重要内容,所以搞懂它很重要!!!

定义

x = ∏ i = 1 c p i k i x=\prod\limits_{i=1}^c p_i^{k_i} x=i=1cpiki,其中 p i p_i pi 为质数。

μ ( x ) = { 1 x = 1 ( − 1 ) c ∏ i = 1 c k i = 1 0 max ⁡ i = 1 c k i > 1 \mu(x)=\begin{cases} 1&x=1\\(-1)^c&\prod\limits_{i=1}^c k_i=1\\0& \max\limits_{i=1}^c k_i>1 \end{cases} μ(x)=1(1)c0x=1i=1cki=1i=1maxcki>1

翻译成人话就是说, μ ( 1 ) = 1 \mu(1)=1 μ(1)=1,如果 x x x 中有平方因子,那么 μ ( x ) = 0 \mu(x)=0 μ(x)=0,否则 μ ( x ) \mu(x) μ(x) 的值由 x x x 中质因子数量奇偶决定。

这个定义其实很简单,然而莫比乌斯函数最重要的是它特殊的性质,我们来看看他有什么性质。

性质

  1. μ \mu μ 是一个积性函数
  2. μ ∗ 1 = ε \mu\ast 1= \varepsilon μ1=ε

证明网上遍地都是,自己搜,懒得写了

莫比乌斯反演

定义

如果我们有 f = g ∗ 1 f=g\ast 1 f=g1,那么 g = f ∗ μ g=f\ast \mu g=fμ

证明

f = g ∗ 1 f ∗ μ = g ∗ μ ∗ g ∗ ε = f ∗ μ g = f ∗ μ □ \begin{aligned} f=g\ast 1\\f\ast \mu=g\ast\mu\ast \\g\ast\varepsilon=f\ast \mu\\g=f\ast \mu\\&\square \end{aligned} f=g1fμ=gμgε=fμg=fμ

其实莫比乌斯函数和莫比乌斯反演简单的很,就是狄利克雷卷积的一个应用,我们做题时经常会用到 μ \mu μ 本身定义和 μ ∗ 1 = ε \mu\ast 1=\varepsilon μ1=ε 这个性质。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值