基于Logistic Regression的猫图片的识别

此文章是本人看了吴恩达的深度学习与神经网络后所做的课后作业。

本人编程的过程中发现了吴恩达所提供的课后作业的某些地方有些许错误,或是某些库中的函数已被淘汰。

本文基于吴恩达课程所提供的代码进行了些许更新与改进。

并且在最后测试图片时发现,识别准确率着实很低(尽管在测试集中的准确率达到了70%, 但本人重新找了很多与猫无关的照片,发现都会被识别为猫,可见这一模型的鸡肋)

O、前期准备

0.1 训练集与测试集

https://download.csdn.net/download/Hubert321/12661358

0.2 所需标准库

本文所需标准库:

import numpy as np
import matplotlib.pyplot as plt
import h5py
import cv2

一、读取数据集

首先,你需要调用h5py库中的函数来读取h5文件中的数据(h5文件中存储了图片信息)

将train_catvnoncat.h5与test_catvnoncat.h5文件放置与工程文件一起即可。

#读取数据集
def load_dataset():
    train_dataset = h5py.File('train_catvnoncat.h5', "r")
    train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
    train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels
    test_dataset = h5py.File('test_catvnoncat.h5', "r")
    test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
    test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels
    classes = np.array(test_dataset["list_classes"][:]) # the list of classes
    train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
    test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
    return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes
#读取数据集
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()

在本题所读取的训练数据集中,共有209张图片,在测试训练集中,共有50张图片。每张图片为64*64大小的RGB图片。

其中,train_set_x_orig 中存储了训练集中每张图片的信息,train_set_y中存储了训练集中每张图片”是否为猫“的信息。test_set_x_orig和test_set_y同理。classes中存储的是 [b’non-cat’ b’cat’]

所以,train_set_x_orig.shape = (209, 64, 64, 3), train_set_y.shape = (1,209), test_set_x_orig = (50,64,64,3), test_set_y = (1,50), classes = (2,)

二、图片预处理

首先要将每张图片的矩阵信息转化为向量,也就是将(64, 64, 3)的图片reshape成(64643)的形式。对于n张图片,也就是将(n, 64, 64, 3)的图片数据转换成(n, 64 * 64 * 3)的形式。

接着对图片进行标准化(像素值/255)

train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T

train_set_x = train_set_x_flatten/255.
test_set_x = test_set_x_flatten/255.

X.reshape(n, -1)的含义是:将X转换成一个X.shape(n, m)的矩阵,m的值由numpy自行计算。
在此题中,train_set_x_flatten.shape = (209, 64643).T = (64643, 209), 同理,test_set_x_flatten.shape = (64643, 50)

三、Logistic回归预测

1)参数X, Y为所要输入的图片信息
2)w, b 是输入X, Y后你所要训练出的参数
3)learning_rate(学习率)和num_iterations(利用梯度下降法求参数w, b时迭代次数)是你自己所要设置的参数,你需要找到一个最佳参数来使得该模型的识别准确率最高。

1 Logistic Regression 相关公式
1.1 sigmoid函数

预测概率A = σ(z)
sigmoid函数:σ(z) = 1 / (1 + e ^ (-z) )
其中z = np.dot(w.T, X) - b

1.2 cost function

cost函数:J(w,b) = -1 / m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A))
dw = dJ/dw = 1 / m * (np.dot(X, (A - Y).T))
db = dJ/db = 1 / m * np.sum(A - Y)
其中,m是每张图片中的像素个数(在本文章中m = 64*64*3)

1.3 梯度下降法求w, b

for i in range(num_iterations):
        w = w - learning_rate*dw
        b = b - learning_rate*db

2 代码部分
2.1 sigmoid函数

其中,z = np.dot(w.T, X) - b

def sigmoid(z):
    s = 1/(1 + np.exp(-z))
    return s
2.2 初始化参数w, b
def initialize_paraments(dim):
    w = np.zeros((dim, 1))
    b = 0
    return w, b

dim是你所要初始化w的size(也可以说是你所要训练的图片的数量,因为w的规模大小取决于图片的数量)

2.3 计算dw, db(为计算w和b做准备)
def propagate(w, b, X, Y):
    m = X.shape[1]
    A = sigmoid(np.dot(w.T, X) + b)
    cost = -1 / m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A))
    dw = 1 / m * (np.dot(X, (A - Y).T))
    db = 1 / m * np.sum(A - Y)
    grads = {"dw":dw, 
             "db":db}
    return grads, cost

w, b是你利用函数initialize_paraments(dim)初始化后的结果,X, Y是训练集图片信息。

函数中的m = X.shape[1] 是每张图片中的像素个数(在本文章中m = 64*64*3)

2.4 训练出最佳参数w, b(梯度下降法)

w = w - learning_rate*dw
b = b - learning_rate*db

def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
    costs = []
    for i in range(num_iterations):
        grads, cost = propagate(w, b, X, Y)
        dw = grads["dw"]
        db = grads["db"]
        w = w - learning_rate * grads["dw"]
        b = b - learning_rate * grads["db"]
        if i % 100 == 0:
            costs.append(cost)
        if print_cost and i % 100 == 0:
            print ("Cost after iteration %i: %f" %(i, cost))
    params = {"w": w,
              "b": b}
    grads = {"dw": dw,
             "db": db}
    return params, grads, costs

所输入的w, b是已经被初始化的参数。X, Y是图片信息。

num_iterations和learning_rate是你所要设置的参数(在本文章中,建议将这两个值分别设置为2000和0.005)

2.5 计算概率,预测结果

利用A = sigmoid(np.dot(w.T, X) + b)来计算概率
若概率大于50%,则判定为1
若小于等于50%,则判定为0

2.5.1 测试集图片预测
def predict(w, b, X):
    m = X.shape[1]
    Y_prediction = np.zeros((1, m))
    w = w.reshape(X.shape[0], 1)
    A = sigmoid(np.dot(w.T, X) + b)
    for i in range(A.shape[1]):
        if A[0, i] <= 0.5:
            Y_prediction[0, i] = 0
        else:
            Y_prediction[0, i] = 1
    assert(Y_prediction.shape == (1, m))
    return Y_prediction
2.5.2 任意jpg图片预测
def isCat(w, b, img):
    img = cv2.resize(img, (train_set_x_orig.shape[1], train_set_x_orig.shape[1]))
    img = img.reshape(train_set_x_orig.shape[1] * train_set_x_orig.shape[1] * 3, 1)
    img = img / 255
    A = sigmoid(np.dot(w.T, img) + b)
    if A <= 0.5:
            A = 0
    else:
            A = 1
    return A
2.6 测试训练集及测试集的准确度
def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.005, print_cost = False):
    w, b = initialize_paraments(X_train.shape[0])
    paraments, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)
    w = paraments["w"]
    b = paraments["b"]
    Y_prediction_train = predict(w, b, X_train)
    Y_prediction_test = predict(w, b, X_test)
    # Print train/test Errors
    print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
    print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))

    d = {"costs": costs,
         "Y_prediction_test": Y_prediction_test, 
         "Y_prediction_train" : Y_prediction_train, 
         "w" : w, 
         "b" : b,
         "learning_rate" : learning_rate,
         "num_iterations": num_iterations}
    return d

四、使用

d = model(train_set_x, train_set_y, test_set_x, test_set_y, 2000, 0.005, True)
w = d["w"]
b = d["b"]
print("请将你所要测试的图片放置入此工程文件夹中")
filename = input("请输入图片名称:")
img = cv2.imread(filename)
flag = isCat(w,b,img)
if(flag):
    print("是猫")
else:
    print("不是猫")

五、总结

利用Logistic回归来识别猫的准确率在本文所提供的训练集与测试集中的高达70%。

在用测试集测试后,本人搜集了很多图片来测试该模型,发现我所搜集的所有与猫无关的照片都被识别为猫准确率实在很低,一度让我觉得我在读取图片或是代码出现了问题 。

此模型对于神经网络入门练练手还行,但不要将此模型投入使用。

该模型的完整代码链接:“https://download.csdn.net/download/Hubert321/12664195”

该文章若有错误,请评论!!!感激不尽!!!

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 在Scikit-learnLogisticRegression()模型有几个可以调整的参数,常用的有以下几个: 1. penalty:正则化项,可以选择L1正则化或L2正则化,默认是L2正则化。 2. C:正则化强度的倒数,越小的C值表示越强的正则化。默认值为1.0。 3. solver:求解器,可以选择不同的求解器,如liblinear、newton-cg、lbfgs等。 4. max_iter:求解器的最大迭代次数,默认值为100。 调参的步骤如下: 1. 确定要进行调参的参数范围。 2. 对每个参数进行交叉验证,找到最佳的参数。 3. 使用最佳的参数重新训练模型。 举个例子,我们可以使用GridSearchCV函数来进行参数调优,代码如下: ``` from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV # 定义模型 model = LogisticRegression() # 定义参数范围 param_grid = {'penalty': ['l1', 'l2'], 'C': [0.001, 0.01, 0.1, 1, 10, 100], 'solver': ['liblinear', 'newton-cg', 'lbfgs', 'sag', 'saga'], 'max_iter': [100, 500, 1000]} # 进行网格搜索 grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5) # 训练模型 grid_search.fit(X_train, y_train) # 输出最佳参数 print(grid_search.best_params_) # 使用最佳参数重新训练模型 model = LogisticRegression(**grid_search.best_params_) model.fit(X_train, y_train) ``` 这里我们定义了penalty、C、solver和max_iter四个参数的范围,然后使用GridSearchCV函数进行网格搜索,最后得到最佳的参数组合并使用最佳参数重新训练模型。注意,这里的X_train和y_train分别表示训练数据集的特征和标签。 ### 回答2: LogisticRegression是一种常用的机器学习算法,用于解决二分类问题。在使用LogisticRegression进行调参时,可以考虑以下几个关键参数: 1. penalty(惩罚项):可以选择L1正则化或L2正则化,默认为L2正则化。L1正则化可以使得模型更加稀疏,适用于特征维度较高的情况,而L2正则化可以防止过拟合。 2. C(惩罚项系数):C的取值范围为[0, ∞),C越小表示惩罚项越大,可能会产生更简单的模型;C越大表示惩罚项越小,可能会产生更复杂的模型。可以通过网格搜索等方法找到合适的C值。 3. solver(求解器):用于优化模型参数的算法,默认为‘lbfgs’。可以选择不同的求解器来获得更好的收敛性和效率。常见的求解器还包括‘liblinear’、‘newton-cg’等。 4. max_iter(最大迭代次数):指定算法运行的最大迭代次数,默认为100。如果模型在限定的迭代次数内没有收敛,可以尝试增大max_iter的值。 在进行调参时,通常可以采用交叉验证的方法来评估不同参数组合的性能。比如可以使用GridSearchCV函数进行网格搜索,通过指定待搜索的参数范围,对模型进行训练和评估。网格搜索会遍历所有参数组合,并返回最优的参数组合及模型性能评估结果。 总之,通过调整LogisticRegression的关键参数,可以提高模型的性能和泛化能力,使其更适应实际问题的需求。调参的过程需要根据实际情况选择合适的参数取值范围,并通过交叉验证等方法进行评估,找到最优的参数组合。 ### 回答3: LogisticRegression()是一个用于二分类的机器学习算法,参数调优对模型的性能和准确度有着重要的影响。下面是关于LogisticRegression()调参的一些建议: 1. 正则化参数C的选择:正则化参数C控制着模型的复杂度和防止过拟合的能力。较小的C值代表较强的正则化,较大的C值代表较弱的正则化。我们可以使用网格搜索或交叉验证来选择最优的C值,以达到平衡模型复杂度和预测准确度的目的。 2. 惩罚方式选择:LogisticRegression()提供了两种不同的惩罚方式,L1和L2正则化。L1正则化可以用于特征选择,因为它可以将一些无用的特征权重降为0。L2正则化可以减少模型的复杂度。我们可以尝试使用L1和L2正则化来比较它们在我们的数据集上的效果,并选择适合的惩罚方式。 3. 解决类别不平衡问题:在二分类问题,如果类别不平衡,即一个类别的样本数量远远大于另一个类别,模型可能倾向于预测出现频率较高的类别。我们可以通过调整参数class_weight来平衡类别权重,使得模型更好地识别少数类别。 4. 收敛条件和迭代次数:LogisticRegression()基于迭代的优化算法,通常使用循环止的策略来建模。我们可以通过max_iter参数来设置最大迭代次数,以及tol参数来设置收敛的容差值。根据数据的复杂度和规模,我们可以调整这些参数来提高模型的性能和运行效率。 5. 特征工程:LogisticRegression()对于原始特征的线性组合比较敏感,因此我们可以尝试进行特征工程来构造新的特征,以提高模型的性能。特征工程可以包括特征选择、特征变换和特征缩放等操作,可以根据数据的特点和问题的需求进行选择。 综上所述,调参是优化LogisticRegression()模型性能的关键步骤。通过选择合适的正则化参数C、选择惩罚方式、解决类别不平衡问题、设置合适的收敛条件和迭代次数以及进行适当的特征工程,可以提高模型的准确度和泛化能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值