关键要点
- MCP(模型上下文协议)似乎是一个开放标准,旨在帮助AI应用连接到各种数据源和工具。
- 其架构基于客户端-服务器模型,主机(AI应用)可以连接到多个服务器,每个服务器提供特定的功能。
- 研究表明,MCP使用JSON-RPC 2.0协议进行消息交换,支持本地(Stdio)和远程(HTTP与SSE)通信。
- 证据倾向于认为,MCP包括工具、提示和资源接口,以增强AI与外部系统的交互。
- 安全措施如HTTPS和访问控制被认为是必要的,尤其是在远程连接中。
什么是MCP协议?
MCP,即模型上下文协议,是一种开放源代码标准,由Anthropic开发,旨在简化AI应用与外部数据源和工具的集成。它使大型语言模型(LLM)能够访问和利用外部信息,从而提供更准确和相关的响应。
架构概述
MCP采用客户端-服务器架构:
- 主机(客户端):这些是需要访问外部数据或工具的AI应用,例如AI驱动的IDE或聊天界面。
- 服务器:轻量级程序,通过标准化的MCP协议暴露特定功能,如文件系统、数据库或API访问。 主机可以连接到多个服务器,每个服务器处理不同类型的数据或功能,这种模块化设计提供了灵活性和可扩展性。
通信和接口
MCP使用JSON-RPC 2.0协议进行消息交换,确保请求和响应的正确格式化。它支持两种传输机制:
- Stdio:用于本地进程间的通信,适合同一机器上的简单管理。
- HTTP与SSE:用于远程通信,支持实时更新,适合分布式系统。 MCP还定义了三个接口:
- 工具:AI可以通过服务器调用的函数或操作,例如网页搜索或代码分析。
- 提示:指导AI如何使用工具的模板,例如生成提交消息的提示。
- 资源:服务器可以访问的数据源的直接引用,如文件路径或数据库URL。
安全与最佳实践
鉴于MCP可能处理敏感数据,安全至关重要:
- 远程连接建议使用HTTPS(带TLS)加密通信。
- 服务器应实施访问控制和输入验证,防止安全漏洞。
- 监控和日志记录对于调试和维护系统健康至关重要。
详细报告:MCP协议及其架构的深入分析
引言
模型上下文协议(MCP)是Anthropic于2024年11月发布的一种开放标准,旨在标准化AI应用与外部数据源和工具的连接。它解决了AI系统与信息孤岛和遗留系统隔离的挑战,提供了一个通用的协议,取代了碎片化的集成方法。本报告详细探讨MCP的协议和架构,涵盖其核心组件、通信机制、安全考虑和最佳实践。
MCP的定义与目的
MCP是一种开放源代码协议,旨在使AI应用能够无缝集成外部数据和工具。它类似于USB-C端口,为AI应用提供了一个标准化的连接方式,类似于USB-C如何连接各种设备到外围设备和附件。MCP的目标是帮助前沿模型产生更好、更相关的响应,特别是在主流采用AI助手的情况下。
根据Model Context Protocol Introduction的内容,MCP通过提供预构建的集成、供应商灵活性和数据安全最佳实践,支持构建基于LLM的代理和复杂工作流。
架构详解
MCP采用客户端-服务器架构,核心组件包括主机(客户端)、服务器以及它们之间的通信层。以下是详细的架构概述:
组件 | 描述 |
---|---|
MCP主机(客户端) | 像Claude Desktop、IDE或AI工具这样的程序,通过MCP访问数据。 |
MCP客户端 | 协议客户端,与服务器保持1:1连接,确保连接隔离和安全。 |
MCP服务器 | 轻量级程序,通过标准化的MCP协议暴露特定功能,如文件访问、数据库查询。 |
本地数据源 | 计算机的文件、数据库和服务,MCP服务器可以安全访问。 |
远程服务 | 通过互联网可用的外部系统(例如通过API),MCP服务器可以连接。 |
根据Core architecture – Model Context Protocol,架构允许主机连接到多个服务器,支持灵活的扩展。主机发起连接,客户端维护与服务器的独立连接,确保安全边界和关注点隔离。
一个意外的细节是,MCP不仅限于本地服务器,Anthropic正在积极开发远程MCP主机,这将扩展其适用范围,特别是在分布式AI工作流中(见Engineering AI systems with Model Context Protocol · Raygun Blog)。
通信协议与传输机制
MCP使用JSON-RPC 2.0协议进行消息交换,这是一种轻量级、语言无关的远程过程调用协议。协议层处理消息框架、请求/响应链接和通信模式,确保高效的数据交换。
传输机制包括:
- Stdio:用于本地通信,适合同一机器上的简单进程管理,推荐用于本地服务器。
- HTTP与SSE:用于远程通信,服务器使用服务器发送事件(SSE)向客户端发送事件,客户端通过HTTP POST发送请求。建议使用TLS进行加密,确保安全。
连接生命周期包括三个阶段:
- 初始化:客户端发送initialize请求,包含版本和能力信息,服务器响应后,客户端发送initialized通知,开始正常消息交换。
- 消息交换:支持请求-响应模式和通知(单向通信,无响应)。
- 终止:通过close()方法优雅关闭,或因传输断开或错误条件终止。
消息类型包括:
- 请求:期望响应,包括method和可选的params。
- 结果:成功的响应,接口开放([key: string]: unknown)。
- 错误:包括code、message和可选的data,标准错误代码如ParseError (-32700)、InvalidRequest (-32600)等,自定义代码在-32000以上。
- 通知:单向通信,无响应,包括method和可选的params。
最佳实践建议验证输入、使用类型安全模式、处理错误、实现超时、报告进度,并使用适当的错误代码(见Core architecture – Model Context Protocol)。
接口与功能
MCP定义了三个关键接口,增强AI与外部系统的交互:
- 工具:AI可以通过服务器调用的函数或操作,例如网页搜索、代码分析或数据处理。根据Engineering AI systems with Model Context Protocol · Raygun Blog,工具示例包括Raygun MCP服务器、GitHub MCP服务器等。
- 提示:指导AI如何使用工具的模板,例如Git服务器的“generate-commit-message”模板。
- 资源:服务器可以访问的数据源的直接引用,如file:///logs/app.log或postgres://database/users。
这些接口使AI不仅能访问数据,还能执行特定操作或获取使用工具的指导。
安全与最佳实践
鉴于MCP可能处理敏感数据,安全是关键考虑因素:
- 传输安全:远程连接建议使用TLS,验证来源,实施认证。
- 消息安全:验证/清理输入,检查大小限制,验证JSON-RPC格式。
- 资源安全:实施访问控制,验证路径,监控使用,限速。
- 错误处理:避免泄露敏感信息,记录安全错误,清理,处理拒绝服务攻击。
最佳实践还包括日志记录协议事件、消息流、性能和错误;诊断健康检查、连接状态、资源使用和性能分析;测试不同传输、错误处理、边缘案例和负载测试(见Core architecture – Model Context Protocol)。
实施示例
一个实施示例使用@modelcontextprotocol/sdk/server/index.js和@modelcontextprotocol/sdk/server/stdio.js设置StdioServerTransport,服务器配置包括名称、版本、能力和请求处理。根据Core architecture – Model Context Protocol,这展示了如何在本地环境中设置MCP服务器。
局限性与未来发展
当前,设置MCP服务器需要技术知识,GitHub是发现新服务器的唯一平台,限制了非技术用户的访问。此外,服务器必须本地运行,限制了数据访问范围。然而,Anthropic正在积极开发远程MCP主机,这将解决本地限制问题(见Engineering AI systems with Model Context Protocol · Raygun Blog)。
结论
MCP提供了一个标准化的、安全的、灵活的方式,使AI应用能够集成外部数据源和工具,增强其功能并确保提供准确和相关的响应。其客户端-服务器架构、JSON-RPC 2.0协议和工具/提示/资源接口使其成为AI集成领域的有希望的标准。