Agent to Agent协议与模型上下文协议:AI 智能体生态系统的比较分析
1. 引言
各行各业对自主 AI 智能体的依赖日益增长,标准化通信协议对于其有效协作和集成至关重要。这些协议旨在弥合不同系统和供应商构建的智能体之间的差距,从而提高生产力并降低集成成本 。本文对最近由谷歌发布的 Agent to Agent (A2A) 协议和由 Anthropic 开发的模型上下文协议 (MCP) 进行了全面的比较分析。A2A 是一种开放标准,专注于促进 AI 智能体之间的直接通信和互操作性 。谷歌开发 A2A 的主要动机是解决将不同框架和不同供应商构建的智能体协同工作所面临的挑战 。通过提供通用的通信语言和一套规则,A2A 有望使智能体能够形成动态的“团队”,以应对跨组织软件环境的复杂、多步骤任务 。
另一方面,模型上下文协议 (MCP) 是一种开放标准,旨在标准化 AI 应用程序向大型语言模型 (LLM) 和 AI 助手提供上下文的方式 。MCP 的目标是通过为连接工具和数据源提供通用框架,从而弥合 AI 助手与其需要导航的数据丰富生态系统之间的差距 。MCP 在 AI 社区中获得了越来越多的关注,并有可能成为将 AI 系统连接到外部数据的实际标准 。
A2A 和 MCP 的同步出现表明,AI 社区越来越认识到标准化协议对于释放 AI 智能体的全部潜力至关重要。这标志着一个转变,即不再仅仅关注单个智能体的能力,而是开始解决多智能体系统及其与现有基础设施集成所面临的挑战。谷歌将 A2A 定位为对 MCP 的补充 ,这暗示了 AI 智能体生态系统中潜在的分工,一个协议侧重于智能体间的通信,另一个协议侧重于智能体与工具/数据间的交互。然而,它们功能上的实际重叠需要仔细检查。本文将深入探讨 A2A 和 MCP 的定义、特性、用例、优点、局限性以及比较分析,以指导读者理解它们在 AI 智能体领域各自扮演的角色。
2. 解构 Agent to Agent (A2A) 协议
-
定义 A2A: A2A 是一种开放协议,它以一致且结构化的方式标准化了自主 AI 智能体如何发现和相互通信 。由 Google Cloud 领导的 A2A 旨在为智能体协作提供一种通用语言,从而提高生产力并降低集成成本 。它促进了独立 AI 智能体之间的通信,无论它们是使用何种框架或由哪个供应商构建的 。A2A 旨在使智能体能够直接通信、安全地交换信息以及协调跨工具、服务和企业系统的操作 。其核心概念包括智能体卡片、A2A 服务器、A2A 客户端、任务、消息、部件和工件 。
-
主要特性和功能:
- 智能体发现: 智能体通过 HTTP 公开一个公共智能体卡片(通常位于
/.well-known/agent.json
)来使自己可被发现 。智能体卡片包含托管/DNS 信息、版本以及智能体能力的结构化列表(技能)。客户端智能体可以通过检查其智能体卡片来找到合适的远程智能体 。该协议支持智能体发现的过滤机制,包括简单的相等性过滤、基于范围的查询、正则表达式和多字段过滤 。 - 通信机制: A2A 构建在常见的 Web 标准之上,如 HTTP、服务器发送事件 (SSE) 和 JSON-RPC 。它使用客户端-服务器模型,其中一个智能体(客户端)要求另一个智能体(远程智能体/服务器)执行任务 。JSON-RPC 2.0 over HTTP(S) 用于请求/响应交互 。SSE 用于流式传输长时间运行任务的实时更新,使智能体能够保持同步 。它支持即时任务完成和长时间运行的过程,并提供实时反馈和状态更新 。推送通知可用于主动向客户端提供的 Webhook URL 发送任务更新 。A2A 对现有 Web 标准的依赖显着降低了开发人员的入门门槛,并有助于与现有企业基础设施的集成。谷歌的这一战略选择可能旨在鼓励快速采用并在协议周围建立广泛的生态系统。
- 任务管理: 主要工作单元称为“任务”,它具有唯一的 ID,并经历提交、工作、需要输入、已完成、已取消和失败等状态 。客户端和远程智能体就任务细节达成一致,包括需要完成的工作和预期的结果格式 。远程智能体处理请求并创建作为结构化结果的工件 。任务中的消息结构促进了客户端和智能体之间的通信轮次,其中包含各种格式(“部件”)的内容,如文本、文件或结构化 JSON 。
- 安全特性: 从一开始就包含强大的安全性,支持检查身份和权限的标准方法,这对于商业用途至关重要 。它在设计时就考虑了企业级身份验证和授权,与启动时的 OpenAPI 身份验证方案具有对等性 。它适用于各种身份验证方法,如 OpenAPI 规范、HTTP 身份验证(基本、持有者)、API 密钥、OAuth 2.0 和 OpenID Connect 。它支持模型与外部工具和数据系统之间的安全双向连接 。
- 数据模态支持: 除了文本之外,还支持各种模态,包括音频、视频流和交互式数据(如表单)。它允许智能体协商消息和工件中不同内容类型所需的正确格式 。A2A 设计原则中对“智能体能力”的关注暗示了超越仅仅将智能体视为工具的趋势。A2A 旨在实现更自然和非结构化的协作,即使智能体没有共享内存或上下文也能协同工作。这预示着更自主和复杂的多智能体系统的愿景。
- 智能体发现: 智能体通过 HTTP 公开一个公共智能体卡片(通常位于
-
示例用例和应用:
- 招聘和候选人搜寻工作流程: 人力资源助理智能体可以使用 A2A 与专门的智能体进行交互,以进行简历搜寻、面试安排和背景调查 。
- 客户服务和支持自动化: 智能体可以协作处理复杂的客户咨询,一个智能体收集信息,另一个智能体提供解决方案 。
- 跨企业系统集成: 连接不同公司系统中的智能体,安全地共享信息和协调工作,打破数据孤岛 。
- 连接业务运营: 连接客户支持、库存管理和财务方面的智能体,以实现跨部门的顺畅自动化流程 。
- 连接不同的软件: 通过连接智能体来创建使用多个应用程序的工作流程,从而提高互操作性,例如将采购智能体连接到 SAP 智能体以创建订单 。
-
A2A 的优势:
- 增强的互操作性: 使由不同供应商构建或使用不同框架的智能体能够有效地通信和协作 。
- 模块化和灵活性: 促进模块化架构,其中可以组合专门的智能体来解决复杂的任务,从而允许独立开发和维护 。
- 易于集成: 构建在现有流行的 Web 标准(HTTP、SSE、JSON-RPC)之上,使其更容易与现有 IT 堆栈集成 。
- 内置安全性: 从一开始就设计了企业级安全性,支持标准的身份验证和授权方案 。
- 支持长时间运行的任务: 可以处理需要数小时或数天的工作,并在此过程中提供更新,适用于复杂的业务运营 。
- 模态无关性: 支持各种通信格式,包括文本、音频、视频和交互式数据 。
-
潜在的局限性和考虑因素:
- 简单工作流程的复杂性: 对于非常基本的智能体交互或任务移交,实施 A2A 的开销可能过大 。
- 需要协议采用: A2A 的全部优势取决于 AI 社区和各种智能体框架的广泛采用 。
- 潜在的复杂性和风险增加: 多轮交互可能会引入更多潜在的故障点,需要强大的状态管理和错误处理 。
- 发现机制的局限性: 当前的发现机制可能缺乏验证智能体能力和声誉的高级功能 。
3. 解构模型上下文协议 (MCP)
-
定义 MCP: MCP 是 Anthropic 引入的一种开放标准,旨在标准化 AI 应用程序如何与外部工具、数据源和系统连接 。其目标是通过为连接工具和数据源提供通用框架,从而弥合 AI 助手与其所需数据之间的差距 。MCP 支持模型与外部工具和数据系统之间的安全双向连接 。它遵循客户端-服务器架构,包括 MCP 主机(AI 应用程序)、MCP 客户端(连接器)和 MCP 服务器(公开功能的程序)。关键组件包括服务器可以向客户端提供的资源(数据)、提示(模板)和工具(函数)。MCP 作为 AI 的“USB-C 接口”的设计突显了其通用连接和易于集成的核心价值主张。这个比喻有效地传达了协议旨在通过提供标准化接口来简化 AI 工具交互的复杂性,类似于 USB-C 如何标准化各种硬件设备的连接。
-
主要特性和功能:
- 标准化上下文提供: MCP 标准化了应用程序向 LLM 提供上下文的方式,就像 AI 应用程序的“USB-C 端口”一样 。
- 与外部工具和数据源集成: 通过提供与数据库、API、业务工具等集成的标准方法,促进在 LLM 之上构建智能体和工作流程 。MCP 服务器公开工具(模型控制的函数)、资源(应用程序控制的数据)和提示(用户控制的模板)。它支持访问本地数据源(文件、数据库)和远程服务(API)。
- 客户端-服务器架构: 采用客户端-服务器模型,其中 AI 系统(客户端)从主机管理的数据存储库或工具(服务器)请求相关上下文 。
- 通信方法: 使用 JSON-RPC 2.0 进行通信并支持有状态会话 。服务器通过 stdio(用于本地集成)或通过 SSE 的 HTTP(用于远程服务)与客户端通信 。
- 安全考虑: 强调用户对数据访问和操作的同意和控制 。在向服务器公开用户数据和调用任何工具之前,需要明确的用户同意 。实施者应构建强大的同意和授权流程,并遵循安全最佳实践 。它支持标准化身份验证机制,如 OAuth、API 令牌和基于角色的访问 。MCP 规范中对安全性和用户同意的强调表明,人们强烈意识到授予 AI 系统访问敏感数据和工具的潜在风险。这种积极主动的安全方法对于建立信任并鼓励在企业环境中采用 MCP 至关重要。
- 启用智能体行为: MCP 能够通过允许开发人员将应用程序和数据源连接到 AI 助手,从而实现智能体行为,从而实现自主决策和采取行动 。
-
示例用例和应用:
- 客户支持聊天机器人: 为聊天机器人提供对工单数据、知识库和 CRM 系统的访问权限,以提供更具上下文意识的支持 。
- 企业 AI 搜索: 将 LLM 与文件存储系统和其他数据存储库集成,使员工能够提出自然语言问题并获得准确的答案以及指向来源的链接 。
- AI 驱动的个人助理: 将个人 AI 助手连接到电子邮件、笔记、日历和智能设备,以提供个性化和主动的帮助 。
- 自主代码重构和优化: 允许 AI 编码助手与静态分析工具、性能分析器和安全扫描程序交互以提高代码质量 。
- 与开发工具集成: 通过将 IDE(如 Cursor 和 Zed)连接到数据库、版本控制系统和其他开发资源,从而增强其 AI 功能 。
- 工作流程自动化: 通过单个界面与各种工具和应用程序交互,从而使 AI 智能体能够执行多步骤、跨系统的工作流程 。
-
MCP 的优势:
- 简化的集成: 提供用于将 LLM 连接到各种数据源和工具的单一标准协议,从而降低了自定义集成的复杂性 。
- 增强的 LLM 效率: 通过标准化上下文管理,MCP 最大限度地减少了 LLM 的不必要处理,并允许它们访问实时数据 。
- 支持复杂的工作流程: 提供了一种结构化的方式,供 LLM 保留、更新和获取上下文,从而实现工作流程的自主管理和进展 。
- 强大的安全框架: 提供对跨不同环境存储、共享和更新上下文的标准化治理,并强调用户同意和控制 。
- 促进智能体 AI: 支持开发能够代表用户执行任务的 AI 智能体,方法是在不同的工具和数据集中维护上下文 。
- 开放且模型无关: 任何人都可以实现它,并且它不依赖于单一的 AI 提供商,从而促进了广泛的工具和集成生态系统 。
-
潜在的局限性和考虑因素:
- 依赖本地服务器操作: MCP 通常需要本地运行服务器,这可能会限制数据可访问性并带来设置障碍 。
- 不断发展的安全标准: 作为一种相对较新的协议,MCP 的安全标准仍在不断发展,仔细实施对于减轻令牌盗窃和提示注入等风险至关重要 。
- 提示注入漏洞的潜在性: LLM 与通过 MCP 连接的外部工具之间的交互可能会为提示注入创建攻击媒介,需要仔细的输入验证和用户意识 。
- 缺乏标准化身份验证: 虽然支持各种身份验证方法,但 MCP 并未强制执行单一的标准化机制,而是将其留给集成提供商 。
- 生态系统的成熟度: 作为一个较新的协议,现成的可靠 MCP 服务器生态系统仍在发展中 。
4. 比较分析:A2A 和 MCP 的实际应用
-
功能重叠与差异:
- 核心焦点: A2A 主要侧重于 AI 智能体之间的通信和协作 ,而 MCP 则侧重于提供上下文并启用 AI 智能体(或 LLM)与外部工具/数据系统之间的交互 。
- 智能体与工具: A2A 将智能体视为可以交互的独立实体,而 MCP 通常将外部系统视为单个智能体的工具或资源 。但是,MCP 也可以通过提供共享工作空间或对通用工具集的访问来间接促进智能体之间的通信 。
- 通信方式: A2A 专为智能体之间的多轮对话式交互而设计,支持各种模态 。MCP 启用 AI 与外部系统之间的双向通信,通常涉及数据请求或函数执行 。
- 发现: A2A 通过智能体卡片具有内置的能力发现机制 。MCP 依赖于配置或外部发现机制来让 AI 应用程序找到可用的服务器 。 尽管谷歌将 A2A 定位为对 MCP 的补充 ,但它们在使 AI 智能体能够与世界和彼此交互的目标上存在显着的重叠。这可能会导致开发人员面临在两种协议之间进行选择或需要同时实施这两种协议以构建全面的智能体系统的情况。A2A 对成熟的 Web 标准的依赖显着降低了开发人员的入门门槛,并有助于与现有企业基础设施的集成。谷歌的这一战略选择可能旨在鼓励快速采用并在协议周围建立广泛的生态系统。
-
技术深入分析:
- 底层技术: 两种协议都利用了 Web 标准。A2A 大量使用 HTTP、SSE 和 JSON-RPC 。MCP 主要使用 JSON-RPC 2.0,并支持 stdio 和通过 SSE 的 HTTP 等传输方式 。
- 架构: A2A 在智能体级别遵循客户端-服务器模型 。MCP 采用更分层的架构,其中主机、客户端和服务器促进 AI 应用程序与外部资源之间的通信 。
- 任务管理: A2A 具有明确的任务生命周期,包括状态和工件生成 。MCP 侧重于调用工具和访问资源,任务管理更多地隐含在 AI 应用程序的逻辑中 。A2A 架构(侧重于智能体)与 MCP 架构(侧重于上下文/工具)的不同反映了构建 AI 智能体系统时可能存在的不同理念。A2A 的方法可能更倾向于分布式协作智能,而 MCP 的设计可能更适合于通过必要的资源增强单个智能体的能力。
-
安全性和可靠性概况:
- 身份验证和授权: A2A 在设计时考虑了企业级安全性,支持各种身份验证方案 。MCP 也强调安全性,包括用户同意,并支持标准的身份验证机制,但其实现更加去中心化 。
- 错误处理: A2A 具有分层的错误恢复方法 。MCP 将错误处理更多地留给服务器和客户端的具体实现 。
- 可靠性: 两种协议都旨在实现可靠的通信,A2A 支持长时间运行的任务并提供更新 ,而 MCP 则侧重于确保一致的上下文和数据访问 。
-
性能考虑: 两种协议的性能将取决于底层网络状况、任务的复杂性以及智能体和服务器实现的效率。提供的片段中没有找到直接的性能比较数据。
表 1:A2A 和 MCP 特性比较
特性 | A2A | MCP |
---|---|---|
主要焦点 | 智能体间通信 | 智能体-工具/数据交互 |
核心架构 | 客户端-服务器(智能体对智能体) | 客户端-主机-服务器(智能体对资源) |
通信方式 | 多轮、对话式、多种模态 | 双向(请求/响应),侧重于数据/工具调用 |
发现机制 | 内置(智能体卡片) | 依赖于配置或外部机制 |
底层技术 | HTTP, SSE, JSON-RPC | JSON-RPC 2.0, stdio, HTTP with SSE |
任务管理 | 明确的任务生命周期,包括状态和工件 | 隐式,由 AI 应用程序逻辑驱动 |
安全性强调 | 企业级身份验证和授权 | 用户同意,支持标准身份验证 |
导出到 Google 表格
5. 选择指南:何时选择 A2A 或 MCP
-
倾向于 A2A 的场景:
- 需要自主智能体之间直接协调和协作的多智能体系统,尤其是在智能体基于不同框架或由不同供应商构建的情况下 。
- 涉及长时间运行任务的工作流程,需要在智能体之间进行实时状态更新和中间结果流式传输 。
- 需要智能体之间交换文本以外的各种数据模态(如音频和视频流)的应用程序 。
- 企业环境中,跨不同系统和平台的安全通信和智能体间的互操作性至关重要 。
-
倾向于 MCP 的场景:
- 主要需求是使单个 AI 智能体或 LLM 能够访问各种外部工具、数据源和功能,以增强其上下文感知和能力的应用程序 。
- 涉及复杂的多步骤工作流程的用例,这些工作流程需要 AI 智能体与多个工具交互并在这些交互中保持上下文 。
- 需要与各种 AI 服务和数据源无缝集成的 AI 助手、IDE 集成或桌面应用程序的开发 。
- 需要以标准化和安全的方式为 LLM 提供来自各种来源的实时数据的场景 。
-
探索协同潜力: 在一些复杂的 AI 系统中,A2A 和 MCP 可以结合使用以实现更复杂的功能 。例如,MCP 可用于为每个专门的智能体配备所需的工具和数据,而 A2A 可以促进这些智能体之间的通信和协调以解决更大的任务 。混合方法可以结合 A2A 在智能体交互方面的适应性和 MCP 在集中式上下文管理方面的清晰性,以实现增强的连贯性和策略一致性 。A2A 和 MCP 之间的选择,或者决定将它们结合使用,很可能取决于正在开发的 AI 智能体系统的具体要求和架构。理解每种协议的核心重点和功能对于做出明智的决策至关重要。A2A 的优势在于实现智能体之间的直接通信,使其适用于协作任务。MCP 擅长为单个智能体提供必要的上下文和工具。因此,最佳选择将取决于 AI 应用程序的性质——是主要需要智能体协同工作,还是需要单个智能体通过外部资源变得高度强大。A2A 和 MCP 协同工作的潜力预示着未来 AI 智能体系统将利用两种协议的优势来实现复杂而细致的行为。这可能涉及分层架构,其中单个智能体通过 MCP 增强能力,然后通过 A2A 进行协调以进行协作问题解决。
表 2:用例适用性表
场景 | 首选协议 |
---|---|
跨不同框架的多智能体协作 | A2A |
为单个智能体配备各种外部工具和数据 | MCP |
需要智能体间通信的长时间运行任务 | A2A |
使用来自各种来源的实时数据增强 LLM | MCP |
涉及各种数据模态(音频、视频)的工作流程 | A2A |
需要访问多个工具的复杂多步骤工作流程 | MCP |
企业环境中智能体之间的安全通信 | A2A |
构建与本地数据和服务集成的 AI 助手 | MCP |
需要智能体间通信和丰富上下文的混合系统 | A2A 和 MCP |
导出到 Google 表格
6. 结论
总之,Agent to Agent (A2A) 协议和模型上下文协议 (MCP) 都是开放标准,它们正在塑造 AI 智能体开发的未来。A2A 的主要优势在于它能够实现自主 AI 智能体之间的直接通信和互操作性,而 MCP 的重点在于标准化 AI 应用程序访问外部上下文和工具的方式。A2A 更适合需要多智能体协作的场景,而 MCP 则更适合于通过外部资源增强单个智能体的能力。最终,这两种协议都有望推动复杂 AI 智能体系统的创新和效率,从而在各个行业中实现更强大的自动化和智能。