剑指offer-动态规划

剑指 Offer 10- I. 斐波那契数列

写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下:

F(0) = 0,   F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.

斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1:

输入:n = 2
输出:1

示例 2:

输入:n = 5
输出:5

解题思路:

斐波那契数列的定义是 f(n + 1) = f(n) + f(n - 1),生成第 n 项的做法有以下几种:

递归法:

  • 原理: 把 f(n) 问题的计算拆分成 f(n-1) 和 f(n-2) 两个子问题的计算,并递归,以 f(0) 和 f(1) 为终止条件。

  • 缺点: 大量重复的递归计算,例如 f(n) 和 f(n - 1)两者向下递归需要 各自计算 f(n - 2)的值。

记忆化递归法:

  • 原理: 在递归法的基础上,新建一个长度为 n 的数组,用于在递归时存储 f(0) 至 f(n)的数字值,重复遇到某数字则直接从数组取用,避免了重复的递归计算。
  • 缺点: 记忆化存储需要使用 O(N) 的额外空间。

动态规划:

  • 原理: 以斐波那契数列性质 f(n + 1) = f(n) + f(n - 1) 为转移方程。
  • 从计算效率、空间复杂度上看,动态规划是本题的最佳解法。

动态规划解析:
状态定义: 设 dp 为一维数组,其中 dp[i]的值代表 斐波那契数列第 i 个数字 。
转移方程:
d p [ i + 1 ] = d p [ i ] + d p [ i − 1 ] dp[i + 1] = dp[i] + dp[i - 1] dp[i+1]=dp[i]+dp[i1]
,即对应数列定义 f(n + 1) = f(n) + f(n - 1);
初始状态: dp[0] = 0, dp[1] = 1 ,即初始化前两个数字;
返回值: dp[n] ,即斐波那契数列的第 个数字。
空间复杂度优化:
若新建长度为 n 的 dp 列表,则空间复杂度为 O(N) 。

由于 dp 列表第 i 项只与第 i-1 和第 i-2 项有关,因此只需要初始化三个整形变量 sum, a, b ,利用辅助变量 sum 使 a, b 两数字交替前进即可 (具体实现见代码) 。
节省了 dp 列表空间,因此空间复杂度降至 O(1) 。
循环求余法:
大数越界: 随着 n 增大, f(n)会超过 Int32 甚至 Int64 的取值范围,导致最终的返回值错误。

求余运算规则: 设正整数 x, y, p ,求余符号为 ⊙ ,则有
( x + y ) ⊙ p = ( x ⊙ p + y ⊙ p ) ⊙ p (x + y) \odot p = (x \odot p + y \odot p) \odot p (x+y)p=(xp+yp)p
解析: 根据以上规则,可推出
f ( n ) ⊙ p = [ f ( n − 1 ) ⊙ p + f ( n − 2 ) ⊙ p ] ⊙ p f ( n ) ⊙ p f(n) \odot p = [f(n-1) \odot p + f(n-2) \odot p] \odot pf(n)⊙p f(n)p=[f(n1)p+f(n2)p]pf(n)p
,从而可以在循环过程中每次计算
s u m = ( a + b ) ⊙ 1000000007 sum = (a + b) \odot 1000000007 sum=(a+b)1000000007
此操作与最终返回前取余等价。

由于 Python 中整形数字的大小限制 取决计算机的内存 (可理解为无限大),因此可不考虑大数越界问题。

class Solution:
    def fib(self, n:int) ->int:
		a, b = 0, 1 
        for _ in range(n):
            a, b = b, a + b
        return a % 1000000007
剑指 Offer 10- II. 青蛙跳台阶问题

一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1:

输入:n = 2
输出:2

示例 2:

输入:n = 7
输出:21

示例 3:

输入:n = 0
输出:1

这题与剑指 Offer 10- I. 斐波那契数列等价,唯一不同的是起始位置不同。

class Solution:
    def numpy(self, n:int) -> int:
        for _ in range(n):
			a, b = b, a + b 
            return a % 1000000007
剑指 Offer 63. 股票的最大利润

假设把某股票的价格按照时间先后顺序存储在数组中,请问买卖该股票一次可能获得的最大利润是多少?

示例 1:

输入: [7,1,5,3,6,4]
输出: 5
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
     注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格。

示例 2:

输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。

解题思路:
设共有 n 天,第 a 天买,第 b 天卖,则需保证 a < b ;可推出交易方案数共有:
( n − 1 ) + ( n − 2 ) + ⋯ + 2 + 1 = n ( n − 1 ) / 2 (n - 1) + (n - 2) + \cdots + 2 + 1 = n(n - 1) / 2 (n1)+(n2)++2+1=n(n1)/2
因此,暴力法的时间复杂度为 O(n^2) 。考虑使用动态规划降低时间复杂度,以下按照流程解题。
动态规划解析:
状态定义: 设动态规划列表 dp ,dp[i] 代表以 prices[i]为结尾的子数组的最大利润(以下简称为 前 i 日的最大利润 )。
转移方程: 由于题目限定 “买卖该股票一次” ,因此前 i 日最大利润 dp[i] 等于前 i - 1 日最大利润 dp[i-1] 和第 i 日卖出的最大利润中的最大值。
前 i 日 最 大 利 润 = max ⁡ ( 前 ( i − 1 ) 日 最 大 利 润 , 第 i 日 价 格 − 前 i 日 最 低 价 格 ) 前 i 日最大利润 = \max(前 (i-1) 日最大利润, 第 i 日价格 - 前 i 日最低价格) i=max((i1),ii)

d p [ i ] = max ⁡ ( d p [ i − 1 ] , p r i c e s [ i ] − min ⁡ ( p r i c e s [ 0 : i ] ) ) dp[i] = \max(dp[i - 1], prices[i] - \min(prices[0:i])) dp[i]=max(dp[i1],prices[i]min(prices[0:i]))

初始状态: dp[0] = 0 ,即首日利润为 0 ;
返回值: dp[n - 1] ,其中 n 为 dp 列表长度。

效率优化:
时间复杂度降低: 前 i 日的最低价格 \min(prices[0:i]) 时间复杂度为 O(i) 。而在遍历 prices 时,可以借助一个变量(记为成本 cost )每日更新最低价格。优化后的转移方程为:
d p [ i ] = max ⁡ ( d p [ i − 1 ] , p r i c e s [ i ] − min ⁡ ( c o s t , p r i c e s [ i ] ) dp[i] = \max(dp[i - 1], prices[i] - \min(cost, prices[i]) dp[i]=max(dp[i1],prices[i]min(cost,prices[i])
空间复杂度降低: 由于 dp[i] 只与 dp[i - 1] , prices[i] , cost 相关,因此可使用一个变量(记为利润 profit)代替 dp 列表。优化后的转移方程为:
p r o f i t = max ⁡ ( p r o f i t , p r i c e s [ i ] − min ⁡ ( c o s t , p r i c e s [ i ] ) profit = \max(profit, prices[i] - \min(cost, prices[i]) profit=max(profit,prices[i]min(cost,prices[i])

class Solution:
    def maxProfit(self, prices:List[int]) -> int:
        cost, profit = float("+inf"), 0
        for price in prices:
            cost = min(cost, price)
            profit = max(profit, price - cost)
        return profit

复杂度分析:
时间复杂度 O(N) : 其中 N 为 prices 列表长度,动态规划需遍历 prices 。
空间复杂度 O(1) : 变量 cost 和 profit 使用常数大小的额外空间。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MGonster

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值