081基于深度学习的农业病虫害检测小程序版本

本文介绍了基于深度学习的农业病虫害检测系统,使用了包括AlexNet、DenseNet等多种卷积网络模型进行分类,并探讨了目标检测(如YOLO系列)和图像分割技术。通过训练数据集生成、模型训练以及Flask服务器部署,实现了与小程序的集成,提供方便的病虫害检测服务。
摘要由CSDN通过智能技术生成

卷积网路CNN分类的模型一般使用包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swin transformer等10多种模型
目标检测一般是yolov3、yolov4、yolov5、yolox、PSPnet、faster_rcnn、SDD等
图像分割一般是Unet、mask-rcnn、PSPnet、yolov5-segment等

​demo仓库和视频演示找081期:

银色子弹zg的个人空间-银色子弹zg个人主页-哔哩哔哩视频

效果展示图如下:

代码文件展示如下:

 

运行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值