543. 二叉树的直径

1、题目描述

 2、题目分析

根据题目描述,可以分析出:

(1)直径长度,等价于任意两个节点路径长度中的最大值,那么也就是求过这个节点的【左子树长度】+【右子树长度】的汇总数里面的最大值

(2)可以不经过根节点

题目解法:

class Solution {
    //二叉树深度的应用
    //直径获取(获取最大值设置为全局变量,动态比较后更新)
    int maxDepth = 0;
    public int diameterOfBinaryTree(TreeNode root) {
         if(root == null) return 0;
         maxDepth(root);
         return maxDepth;
    }

    private int maxDepth(TreeNode root){
         if(root == null) return 0;
         //分别获取左右子树的深度
         int left = maxDepth(root.left);
         int right = maxDepth(root.right);

         //直径获取,当前节点的左右子树汇总和深度
         maxDepth = Math.max(maxDepth, left+right);
         //求二叉树深度
         return Math.max(left,right)+1;
    }

}

复杂度分析

时间复杂度:O(N),其中 N 为二叉树的节点数,即遍历一棵二叉树的时间复杂度,每个结点只被访问一次。

空间复杂度:O(Height),其中 Height为二叉树的高度。由于递归函数在递归过程中需要为每一层递归函数分配栈空间,所以这里需要额外的空间且该空间取决于递归的深度,而递归的深度显然为二叉树的高度,并且每次递归调用的函数里又只用了常数个变量,所以所需空间复杂度为 O(Height)。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值