datastage 7.5.1A序列号共享

Ascential Datastage 7.5.1A:
-=-=-=-=-=-=-=-=-=-=-=-=-=-

1) run "setup.exe" to install

2) When setup asks for Authorization Details use the following

   (CASE SENSITIVE):

   * DataStage Server:

   Serial Number: 12345
   CPU Count: 100
   Expiration Date: 12/12/2099
   Enterprise Edition Code: MRCJPnYl9cO
   Server Code: Ji01z/oH0cN
   MVS Edition Code:mW.l3u0xDpr

   RTI Agent: rM5ETjXcXWk
   SAS Integration: bn/VIM59BJb
   IMS Source: 22.2HXIZtPT

   * DataStage Client:

   Serial Number: 12345-DSDES
   User Limit: 100
   Expiration Date: 12/12/2099
   Authorization Code: FJ/IKr/khOS

3) enjoy another fine iNFECTED-release!

NOTE: greets fly out to Team iSO for their nice supply
   and their fine set of serials! ;-)
Datapaq 系统由一个可编程数据记录器、一个隔热箱(由包封在不锈钢内的高效隔热层构成)、热电偶(可附接在产品上)以及 Insigh t分析软件等组成。 Q18数据记录器系列 12个信道、超 小低高度、快速采样, 或极超窄的宽度可选……无论何种需求,新型Q18系列记录器都是您的最佳选择。 超快USB连接 下载后数据仍然存 超窄的宽度可选——不超过60mm宽 我们的记录器/隔热箱组合的适应性无人能 小低高度——不超过12mm高 低入口/低挡板的炉子……没问题 采样间隔短至0.05秒 永葆准确精密 每信道18,000个读数 更多数据点,更高分辨率 精度高达0.5℃ 给您足够的信心 快速充电 随时备用! 易用的Datapaq启动/停止按钮 不会丢失数据,也不会浪费时间 这些隔热箱坚固而又轻巧,在长期的使用中承耐苛刻的炉温过程,高可靠性。用高级不锈钢制成,现在还配有经过改进的易用而又安全的按钮开合方式。 RTI-033-97 Datapaq Reflow Tracker System 窄形六通道系统 包含下列内容 SW5366A Insight炉温跟踪仪中文分析软件 DQ1862 Q18 数据记录器,K 型电极, 6个通道, -200°to 1370℃ 精度± 0.5℃,每通道可储存18,000个数据,编程起动,采样间隔为0.05秒至10分钟可调,快速充电、镍氢充电电池及充电器, 可用于实时测量。 尺寸:165mm(长)X57mm(宽)X20mm(高) TB2021 隔热箱 不锈钢结构、多微孔隔热层 外形尺寸: 223(长) x 84(宽) x 35mm (高) 绝热时间: 200度11分钟 PA0210 测头组件 PTFE绝缘,金属直径0.2mm,极限温度0℃至265℃ CC0048 工具包 这个Datapaq Insight Reflow Tracker供学习使用,工具自带序列号,无需安装和注册,支持全版本Windows
相关推荐
Datapaq 系统由一个可编程数据记录器、一个隔热箱(由包封在不锈钢内的高效隔热层构成)、热电偶(可附接在产品上)以及 Insigh t分析软件等组成。 Q18数据记录器系列 12个信道、超 小低高度、快速采样, 或极超窄的宽度可选……无论何种需求,新型Q18系列记录器都是您的最佳选择。 超快USB连接 下载后数据仍然存 超窄的宽度可选——不超过60mm宽 我们的记录器/隔热箱组合的适应性无人能 小低高度——不超过12mm高 低入口/低挡板的炉子……没问题 采样间隔短至0.05秒 永葆准确精密 每信道18,000个读数 更多数据点,更高分辨率 精度高达0.5℃ 给您足够的信心 快速充电 随时备用! 易用的Datapaq启动/停止按钮 不会丢失数据,也不会浪费时间 这些隔热箱坚固而又轻巧,在长期的使用中承耐苛刻的炉温过程,高可靠性。用高级不锈钢制成,现在还配有经过改进的易用而又安全的按钮开合方式。 RTI-033-97 Datapaq Reflow Tracker System 窄形六通道系统 包含下列内容 SW5366A Insight炉温跟踪仪中文分析软件 DQ1862 Q18 数据记录器,K 型电极, 6个通道, -200°to 1370℃ 精度± 0.5℃,每通道可储存18,000个数据,编程起动,采样间隔为0.05秒至10分钟可调,快速充电、镍氢充电电池及充电器, 可用于实时测量。 尺寸:165mm(长)X57mm(宽)X20mm(高) TB2021 隔热箱 不锈钢结构、多微孔隔热层 外形尺寸: 223(长) x 84(宽) x 35mm (高) 绝热时间: 200度11分钟 PA0210 测头组件 PTFE绝缘,金属直径0.2mm,极限温度0℃至265℃ CC0048 工具包 这个Datapaq Insight Reflow Tracker供学习使用,工具自带序列号,无需安装和注册,支持全版本Windows
<p> <strong><span style="font-size:20px;color:#FF0000;">本课程主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的Java学习者</span></strong> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">1. 包含:<span style="color:#FFFF00;background-color:#FF0000;">项目源码、</span><span style="color:#FFFF00;background-color:#FF0000;">项目文档、数据库脚本、软件工具</span>等所有资料</span></strong></span> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">2. 手把手的带你从零开始部署运行本套系统</span></strong></span> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">3. 该项目附带的源码资料可作为毕设使用</span></strong></span> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">4. 提供技术答疑和远程协助指导</span></strong></span><strong><span style="font-size:18px;"></span></strong> </p> <p> <br /> </p> <p> <span style="font-size:18px;"><strong>项目运行截图:</strong></span> </p> <p> <strong><span style="font-size:18px;">1)系统登陆界面</span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241015433522.png" alt="" /><br /> </span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">2)学生模块</span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241015575966.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">3)教师模块</span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241016127898.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">4)系统管理员</span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241016281177.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241016369884.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><br /> </span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">更多Java毕设项目请关注我的毕设系列课程 <a href="https://edu.csdn.net/lecturer/2104">https://edu.csdn.net/lecturer/2104</a></span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><br /> </span></strong> </p>
<p> 课程演示环境:Windows10  </p> <p> 需要学习<span>Ubuntus</span>系统<span>YOLOv4-tiny</span>的同学请前往《<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》 <span></span> </p> <p> <span> </span> </p> <p> <span style="color:#E53333;">YOLOv4-tiny</span><span style="color:#E53333;">来了!速度大幅提升!</span><span></span> </p> <p> <span> </span> </p> <p> <span>YOLOv4-tiny</span>在<span>COCO</span>上的性能可达到:<span>40.2% AP50, 371 FPS (GTX 1080 Ti)</span>。相较于<span>YOLOv3-tiny</span>,<span>AP</span>和<span>FPS</span>的性能有巨大提升。并且,<span>YOLOv4-tiny</span>的权重文件只有<span>23MB</span>,适合在移动端、嵌入式设备、边缘计算设备上部署。<span></span> </p> <p> <span> </span> </p> <p> 本课程将手把手地教大家使用<span>labelImg</span>标注和使用<span>YOLOv4-tiny</span>训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。<span></span> </p> <p> <span> </span> </p> <p> 本课程的<span>YOLOv4-tiny</span>使用<span>AlexAB/darknet</span>,在<span>Windows10</span>系统上做项目演示。包括:<span>YOLOv4-tiny</span>的网络结构、安装<span>YOLOv4-tiny</span>、标注自己的数据集、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计<span>(mAP</span>计算<span>)</span>和先验框聚类分析。 <span> </span> </p> <p> <span> </span> </p> <p> 除本课程《<span>Windows</span>版<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》外,本人推出了有关<span>YOLOv4</span>目标检测的系列课程。请持续关注该系列的其它视频课程,包括:<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:训练自己的数据集》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:人脸口罩佩戴识别》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:中国交通标志识别》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测:原理与源码解析》<span></span> </p> <p> <span> <img alt="" src="https://img-bss.csdnimg.cn/202007061503586145.jpg" /></span> </p> <p> <span><img alt="" src="https://img-bss.csdnimg.cn/202007061504169339.jpg" /><br /> </span> </p>
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页