连号区间数

/*标题:连号区间数
小明这些天一直在思考这样一个奇怪而有趣的问题:
在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是:
如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的“连续”数列,则称这个区间连号区间。
当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助。
输入格式:
第一行是一个正整数N (1 <= N <= 50000), 表示全排列的规模。
第二行是N个不同的数字Pi(1 <= Pi <= N), 表示这N个数字的某一全排列。
输出格式:
输出一个整数,表示不同连号区间的数目。
示例:
用户输入:
4
3 2 4 1
程序应输出:
7
用户输入:
5
3 4 2 5 1
程序应输出:
9
解释:
第一个用例中,有7个连号区间分别是:[1,1], [1,2], [1,3], [1,4], [2,2], [3,3], [4,4]
第二个用例中,有9个连号区间分别是:[1,1], [1,2], [1,3], [1,4], [1,5], [2,2], [3,3], [4,4], [5,5]
资源约定:
峰值内存消耗(含虚拟机) < 64M
CPU消耗  < 5000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意:不要使用package语句。不要使用jdk1.6及以上版本的特性。
注意:主类的名字必须是:Main,否则按无效代码处理。*/
//这里加入输入:

/*用户输入:
4
3 2 4 1
程序应输出:
7

则,与之对应的是:(3,3) (3,2) (3,2,4) (3,2,4,1)  (2,2)  (4,4)  (1,1)

有7个连号区间分别是:[1,1], [1,2], [1,3], [1,4], [2,2], [3,3], [4,4]

就是说从中选取一个区间,其中的数字能够经过全排列之后产生一个连续的序列

也就是max-min=count+1;

*/

//代码参见:yibcs的

#include"stdio.h"
#include"stdlib.h"
int main()
{int i,j,k,max,min,count=0,n;
 int a[50002];
 scanf("%d",&n);
 for(i=1;i<=n;i++)
  scanf("%d",&a[i]);
 for(i=1;i<=n;i++)
 {
     max=a[i];min=a[i];
     for(j=i+1;j<=n;j++)
  {
            if(a[j]>max)
                max=a[j];
            if(a[j]<min)
                min=a[j];
   if((max-min)==(j-i))
    count++;
  }
 }
   printf("%d\n",count+n);
printf("\n");
system("pause");}
 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值