shell 解压压缩文件[zip][tar][tar.gz]

本文详细介绍shell环境下如何使用zip和tar命令进行文件压缩与解压操作,包括各种参数的使用,如-r、-u、-z等,适用于快速处理大量文件的场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

shell 解压文件

20191017


  • zip文件(参考资料1)
  • 压缩
zip -r mydata.zip mydata #压缩mydata目录
zip -r mydata.zip ./*txt #压缩当前目录下后缀名为.txt的文件为mydata.zip
  • 解压
unzip mydata.zip -d mydatabak #把mydata.zip解压到mydatabak目录里面
  • 参数
-c:将解压缩的结果
-l:显示压缩文件内所包含的文件
-p:与-c参数类似,会将解压缩的结果显示到屏幕上,但不会执行任何的转换
-t:检查压缩文件是否正确
-u:与-f参数类似,但是除了更新现有的文件外,也会将压缩文件中的其它文件解压缩到目录中
-v:执行是时显示详细的信息
-z:仅显示压缩文件的备注文字
-a:对文本文件进行必要的字符转换
-b:不要对文本文件进行字符转换
-C:压缩文件中的文件名称区分大小写
-j:不处理压缩文件中原有的目录路径
-L:将压缩文件中的全部文件名改为小写
-M:将输出结果送到more程序处理
-n:解压缩时不要覆盖原有的文件
-o:不必先询问用户,unzip执行后覆盖原有文件
-P:使用zip的密码选项
-q:执行时不显示任何信息
-s:将文件名中的空白字符转换为底线字符
-V:保留VMS的文件版本信息
-X:解压缩时同时回存文件原来的UID/GID

  • tar文件(参考资料2)
  • 压缩
tar -czf jpg.tar.gz *.jpg    
#[将目录里所有jpg文件打包成jpg.tar后,并且将其用gzip压缩,生成一个gzip压缩过的包,命名为jpg.tar.gz]
  • 解压
tar -xvf file.tar  file     #解压tar包到file目录
tar -zxvf file.tar.gz  file   #解压tar.gz包到file目录
语法:tar [-cxtzjvfpPN] 文件或目录
1、必选其中之一选项【一次只能使用其中一个,不能同时使用多个】
-c   建立一个压缩文件的参数指令(create 的意思);  
-x   解开一个压缩文件【即解压】  
-t   查看 tarfile 里面的文件!  
-r   向压缩归档文件末尾追加文件  
-u   更新原压缩包中的文件 

2、可选选项:【常用的有:-z、-v、-f】
-z   有gzip属性,即需要用 gzip 压缩 
-v   压缩的过程中显示文件(显示所有过程)!这个常用,但不建议用在背景执行过程! 
-f   使用档案名字,切记,这个参数是最后一个参数,后面只能接档案名。

-j   有bz2属性,即需要用 bzip2 压缩  
-Z   有compress属性的 
-O   将文件解开到标准输出  
-p   使用原文件的原来属性(属性不会依据使用者而变)  
-P   可以使用绝对路径来压缩! 
-N   比后面接的日期(yyyy/mm/dd)还要新的才会被打包进新建的文件中!  --exclude FILE:在压缩的过程中,不要将 FILE 打包
-f   使用档名,请留意,在 f 之后要立即接档名!不要再加参数!

参考

参考资料-1
参考资料-2

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值