python中timeit模块用法

转自:

http://blog.sina.com.cn/s/blog_6163bdeb0101806e.html
http://www.sharejs.com/codes/python/6199
http://blog.csdn.net/rumswell/article/details/7349915


想测试一行代码的运行时间,在python中比较方便,可以直接使用timeit:

看个例子吧

[python]  view plain copy
  1. >>> import timeit  
  2. #执行命令  
  3. >>> t2 = timeit.Timer('x=range(1000)')  
  4. #显示时间  
  5. >>> t2.timeit()  
  6. 10.620039563513103  
  7.   
  8. #执行命令  
  9. >>> t1 = timeit.Timer('sum(x)''x = (i for i in range(1000))')  
  10. #显示时间  
  11. >>> t1.timeit()  
  12. 0.1881566039438201  


 或者如下使用

[python]  view plain copy
  1. In [1]: from timeit import timeit as timeit  
  2.   
  3. In [2]: timeit('x=1')  
  4. Out[2]: 0.03820111778328037  
  5.   
  6. In [3]: timeit('x=map(lambda x:x*10,range(32))')  
  7. Out[3]: 8.05639690328919  


其实在ipython中可以直接使用

 

[python]  view plain copy
  1. In [4]: timeit  y=map(lambda x:x**10,range(32))   
  2. 10000000 loops, best of 316.2 ns per loop  


 

在python中编程,最大的乐趣就是实际自己需要实现的东西很少.


Python 社区有句俗语: “python自己带着电池” ,别自己写计时框架。 Python 2.3 具备一个叫做 timeit的完美计时工具可以测量python代码的运行时间。

timeit 模块

  • timeit 模块定义了接受两个参数的 Timer 类。两个参数都是字符串。 第一个参数是你要计时的语句或者函数。 传递给 Timer 的第二个参数是为第一个参数语句构建环境的导入语句。 从内部讲, timeit 构建起一个独立的虚拟环境, 手工地执行建立语句,然后手工地编译和执行被计时语句。
  • 一旦有了 Timer 对象,最简单的事就是调用 timeit(),它接受一个参数为每个测试中调用被计时语句的次数,默认为一百万次;返回所耗费的秒数。
  • Timer 对象的另一个主要方法是 repeat(), 它接受两个可选参数。 第一个参数是重复整个测试的次数,第二个参数是每个测试中调用被计时语句的次数。 两个参数都是可选的,它们的默认值分别是 3 和1000000 repeat() 方法返回以秒记录的每个测试循环的耗时列表。Python 有一个方便的 min 函数可以把输入的列表返回成最小值,如: min(t.repeat(3, 1000000))
  • 你可以在命令行使用 timeit 模块来测试一个已存在的 Python 程序,而不需要修改代码。

 

# -*- coding: utf-8 -*-
#!/bin/env python

def test1():
    n=0
    for i in range(101):
        n+=i
    return n

def test2():
    return sum(range(101))

def test3():
    return sum(x for x in range(101))

if __name__=='__main__':
    from timeit import Timer
    t1=Timer("test1()","from __main__ import test1")
    t2=Timer("test2()","from __main__ import test2")
    t3=Timer("test3()","from __main__ import test3")
    print t1.timeit(10000)
    print t2.timeit(10000)
    print t3.timeit(10000)
    print t1.repeat(3,10000)
    print t2.repeat(3,10000)
    print t3.repeat(3,10000)

结果如下

3.21831489756
0.109082858296
4.83077821343
[3.2328774327463403, 3.200496361967792, 3.219513164382626]
[0.11024445844373787, 0.10911708052280389, 0.10891761383080834]
[4.817947811802895, 4.892466221265554, 5.003930946530911]

 

利用time模块

利用time模块(仅作练习之用,不推荐)。 time.localtime(),  time.time(),  time.clock() 对比:

  • time.localtime(),localtime返回的是struct_time,包含年月日,显然没有必要,更重要的是localtime()的精度依赖于time()
  • time.time(),time返回的是UTC时间(seconds since the 00:00:00 UTC on January 1)。在很多系统,包括windows下精度很差,win32下的精度只有1/18.2秒。不过在Unix/Linux系统下,time()的精度还是很高的。
  • Python的标准库手册推荐在任何系统下都尽量使用time.clock()。不过要注意是在win32系统下,这个函数返回的是真实时间(wall time),而在Unix/Linux下返回的是CPU时间。在win32下,这个函数的时间分辨率好于1微秒。

# -*- coding: utf-8 -*-
#!/bin/env python

def test():
    L=[]
    for i in range(100):
        L.append(i)

if __name__=='__main__':
    from time import clock
    start=clock()
    for i in range(10000):
        test()
    finish=clock()
    print (finish-start)/10000

执行结果为

0.00032365431221

 

其他方法

遇到复杂的程序,有很多性能分析工具可用。比如python的标准库里的profile可以统计程序里每一个函数的运行时间,并且提供了多样化的报表。


大多时候,需要做的是"怎么用"!

python内置了timeit模块,通过它可以很简单的计算出代码执行时间,可以通过number参数控制代码的执行次数,非常好用。
更详细的实用方法可以参考:http://docs.python.org/2/library/timeit.html

>>> import timeit
>>> timeit.timeit('"-".join(str(n) for n in range(100))', number=10000)
0.8187260627746582
>>> timeit.timeit('"-".join([str(n) for n in range(100)])', number=10000)
0.7288308143615723
>>> timeit.timeit('"-".join(map(str, range(100)))', number=10000)
0.5858950614929199
#该代码片段来自于: http://www.sharejs.com/codes/python/6199

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值