scala 自定义排序

package day05
 
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
 
object SortTest1 {
 
  def main(args: Array[String]): Unit = {
 
    val conf: SparkConf = new SparkConf().setAppName("SortTest1").setMaster("local[4]")
    val sc: SparkContext = new SparkContext(conf)
 
    val content = Array("laoduan 29 88","laoyang 30 100","laozhang 24 70","laoli 34 88")
 
    // parallelize构造RDD对象
    val contentRDD: RDD[String] = sc.parallelize(content)
    // 过滤
    val mapRDD: RDD[(String, Int, Int)] = contentRDD.map(line => {
      val fileds: Array[String] = line.split(" ")
      val name: String = fileds(0)
      val age: Int = fileds(1).toInt
      val faceValue: Int = fileds(2).toInt
      (name, age, faceValue)
    })
    // 排序
    val sorted: RDD[(String, Int, Int)] = mapRDD.sortBy(tp=>new MethodForSort(tp._3,tp._2))
    println(sorted.collect().toBuffer)
    sc.stop()
  }
 
}
 
// 自定义排序,sorted排序继承Ordered,需要序列化
class MethodForSort(val fv:Int, val age:Int) extends Ordered[MethodForSort] with Serializable{
  override def compare(that: MethodForSort): Int = {
    // 如果fv相等,就比较年龄
    if(this.fv == that.fv){
      this.age - that.age
    }else{
      -(this.fv - that.fv)
    }
  }
}
package day05
 
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
 
object SortTest2 {
 
  def main(args: Array[String]): Unit = {
 
    val conf: SparkConf = new SparkConf().setAppName("SortTest2").setMaster("local[4]")
    val sc: SparkContext = new SparkContext(conf)
 
    val content = Array("laoduan 29 88","laoyang 30 100","laozhang 24 70","laoli 34 88")
 
    // parallelize构造RDD对象
    val contentRDD: RDD[String] = sc.parallelize(content)
    // 过滤
    val mapRDD: RDD[MethodForSort2] = contentRDD.map(line => {
      val fileds: Array[String] = line.split(" ")
      val name: String = fileds(0)
      val age: Int = fileds(1).toInt
      val faceValue: Int = fileds(2).toInt
      // (name, age, faceValue)
      new MethodForSort2(name,age,faceValue)
    })
 
    // 将RRD里面装的MethodForSort2类型的数据进行排序
    val sorted: RDD[MethodForSort2] = mapRDD.sortBy(tp=>tp)
    println(sorted.collect().toBuffer)
    sc.stop()
  }
 
}
 
// 自定义排序,sorted排序继承Ordered,需要序列化
class MethodForSort2(val name:String,val age:Int, val fv:Int) extends Ordered[MethodForSort2] with Serializable{
  override def compare(that: MethodForSort2): Int = {
    // 如果fv相等,就比较年龄
    if(this.fv == that.fv){
      this.age - that.age
    }else{
      -(this.fv - that.fv)
    }
  }
  override def toString: String = s"name:$name,age:$age,faceValue:$fv"
}
package day05
 
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
 
object SortTest3 {
 
  def main(args: Array[String]): Unit = {
 
    val conf: SparkConf = new SparkConf().setAppName("SortTest3").setMaster("local[4]")
    val sc: SparkContext = new SparkContext(conf)
 
    val content = Array("laoduan 29 88","laoyang 30 100","laozhang 24 70","laoli 34 88")
 
    // parallelize构造RDD对象
    val contentRDD: RDD[String] = sc.parallelize(content)
    // 过滤
    val mapRDD: RDD[(String, Int, Int)] = contentRDD.map(line => {
      val fileds: Array[String] = line.split(" ")
      val name: String = fileds(0)
      val age: Int = fileds(1).toInt
      val faceValue: Int = fileds(2).toInt
      (name, age, faceValue)
    })
    // 排序
    val sorted: RDD[(String, Int, Int)] = mapRDD.sortBy(tp=>MethodForSort3(tp._3,tp._2))
    println(sorted.collect().toBuffer)
    sc.stop()
  }
 
}
 
// 自定义排序,sorted排序继承Ordered,需要序列化
// case class 是多例模式
case class MethodForSort3(fv:Int, age:Int) extends Ordered[MethodForSort3] with Serializable{
  override def compare(that: MethodForSort3): Int = {
    // 如果fv相等,就比较年龄
    if(this.fv == that.fv){
      this.age - that.age
    }else{
      -(this.fv - that.fv)
    }
  }
}
package day05
 
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
 
object SortTest4 {
 
  def main(args: Array[String]): Unit = {
 
    val conf: SparkConf = new SparkConf().setAppName("SortTest4").setMaster("local[4]")
    val sc: SparkContext = new SparkContext(conf)
 
    val content = Array("laoduan 29 88","laoyang 30 100","laozhang 24 70","laoli 34 88")
 
    // parallelize构造RDD对象
    val contentRDD: RDD[String] = sc.parallelize(content)
    // 过滤
    val mapRDD: RDD[(String, Int, Int)] = contentRDD.map(line => {
      val fileds: Array[String] = line.split(" ")
      val name: String = fileds(0)
      val age: Int = fileds(1).toInt
      val faceValue: Int = fileds(2).toInt
      (name, age, faceValue)
    })
    // 充分利用元组的比较规则,元组的比较规则:先比第一,相等再比第二个
    val sorted: RDD[(String, Int, Int)] = mapRDD.sortBy(tp=>(-tp._3,tp._2))
    println(sorted.collect().toBuffer)
    sc.stop()
  }
 
}
package day05
 
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
 
object SortTest5 {
 
  def main(args: Array[String]): Unit = {
 
    val conf: SparkConf = new SparkConf().setAppName("SortTest5").setMaster("local[4]")
    val sc: SparkContext = new SparkContext(conf)
 
    val content = Array("laoduan 29 88","laoyang 30 100","laozhang 24 70","laoli 34 88")
 
    // parallelize构造RDD对象
    val contentRDD: RDD[String] = sc.parallelize(content)
    // 过滤
    val mapRDD: RDD[(String, Int, Int)] = contentRDD.map(line => {
      val fileds: Array[String] = line.split(" ")
      val name: String = fileds(0)
      val age: Int = fileds(1).toInt
      val faceValue: Int = fileds(2).toInt
      (name, age, faceValue)
    })
    //充分利用元组的比较规则,元组的比较规则:先比第一,相等再比第二个
    //Ordering[(Int, Int)]最终比较的规则格式
    //on[(String, Int, Int)]未比较之前的数据格式
    //(t =>(-t._3, t._2))怎样将规则转换成想要比较的格式
    implicit val rules = Ordering[(Int,Int)].on[(String,Int,Int)](t=>(-t._3,t._2))
    val sorted: RDD[(String, Int, Int)] = mapRDD.sortBy(tp=>tp)
    println(sorted.collect().toBuffer)
    sc.stop()
  }
 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值