Leetcode Minimum path sum

这篇博客介绍了LeetCode中的Minimum Path Sum问题,通过将矩阵视为邻接矩阵,联系到最小生成树算法。然而,实际解题时使用了动态规划(DP)直接求解,其中每个单元格的最小路径和依赖于其上方和左侧的最小路径和。文章重点解析了DP状态转移方程。
摘要由CSDN通过智能技术生成

题目:
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

题目解析:
这道题第一眼看到minimum path马上就可以联想到最小生成树,可以将这一个矩阵看成一个邻接矩阵来计算,根据图的最小生成树算法,很快就可以计算出最小路径和。

事实上,最小生成树的Dijkstra算法就是以DP为基础的算法。在探索路径中找到最小的路径和。但这道题其实可以直接的DP算法。
首先,因为每一个方块的最小路径和是和上面和左边的最小路径和有关。写出状态转移方程:

sum[i][j]=minsum[i1][j]+element[i][j],sum[i][j1],element[i][j]

根据状态转移方程写出代码:

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        int m = grid.size(), n = grid[0].size();
        if (!m && !n)   return 0;
        int sums[m][n];
        memset(sums, 0, sizeof(sums));
        sums[0][0] = grid[0][0];
        for (int r = 0; r < m; r++) {
            for (int c = 0; c < n; c++) {
                if (!r && !c)   continue;
                if (!r) sums[r][c] = grid[r][c] + sums[r][c - 1];
                else if (!c) sums[r][c] = grid[r][c] + sums[r - 1][c];
                else {
                    sums[r][c] = min(sums[r - 1][c] + grid[r][c], sums[r][c - 1] + grid[r][c]);
                    cout << sums[r][c] << ' ';

                }
            }
            cout << endl;
        }
        return sums[m - 1][n - 1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值