注:下面内容是从发布版本的 changelog 文件中翻译过来的,仅供参考。
======================
OPENCV 1.0 RC1 , 发布时间:2006年8月
======================
>>> 新函数与新特征 <<<
- 支持的新编译器/环境:
* GCC 4.x
* Visual Studio .NET 2005.
注意: a) 工程文件 .vcproj's 以及相应的环境文件均被转换成 VS.NET 2005 的格式,
因此它们不能被 VS.NET 2003 打开。作为工作区,可以将工程文件和工作区转换
为 Visual Studio 6.0,再转换到 VS.NET 2003.
b) 工程可以在 Win32 以及 x64 (a.k.a. EM64T/AMD64) 平台上编译.
c) 默认情况下支持 OpenMP.
* 在 MacOSX 上,通用的 OpenCV 二进制代码可以在缺省情况下编译,因此 PPC 和 INTEL MAC‘S 系统
全部都支持。
* 取消了对 Borland C++ 的支持,但是仍然有一个脚本文件 utils/gen_make.py 可以通过生成文件
makefile.bcc's 来编译 (没有在 RC1 上测试)。
* 新的命令行 makefiles _make/makefile.* 被引入,允许用户在 Win64 (EM64T/AMD64 and Itanium)
平台上编译 OPENCV。具体细节参考文件 INSTALL。
- cxcore:
* 增加了一些新的函数:
cvMixChannels, cvRandShuffle, cvRange, cvCalcPCA, cvProjectPCA, cvBackProjectPCA,
cvNormalize, cvReduce, cvGetNumThreads, cvSetNumThreads, cvGetThreadNum.
See docs/ref/opencvref_cxcore.htm for details.
* 扩展了函数 cvCalcCovarMatrix, cvMulTransposed
* 为库增加宏: 见 cxcore/include/cvver.h
* 为 CvImage 和 CvMatrix 增加 C++ 类:
见 cxcore/include/cxcore.hpp 以及样例 samples/c/image.cpp
* 矩阵的最大通道数增加到 64 个,尽管只有一些特殊函数才处理这样的图像。
- cv:
* 新函数:
cvPyrMeanShiftFiltering, cvWatershed, cvGetAffineTransform.
see docs/ref/opencvref_cv.htm for details.
* 扩展:
cvDistTransform (true distance transform algorithm),
cvThresh (Otsu adaptive algorithm),
cvCanny (using true gradient as an option)
* 所有的滤波函数重新编写过,为线性可分以及不可分滤波增加了新的 C++ 类,并增加了
morphology, laplace, box filer (模糊).
见 cv/include/cv.hpp.
****** API 的变化:
* cvCamShift, cvBoxPoints 以及所有其它与角度有关的函数,现在都用角度而不是弧度返回
- cvaux:
* 增加了新的大型视频监控模块,见
(cvaux/src/vs and cvaux/include/cvvidsurv.h).
该模块完善了智能目标跟踪功能,见 docs/vidsurv 中的描述
- ml (机器学习):
* 这是一个全新的为统计分类、回归以及聚类而写的 C++ 类库. 见 docs/ref/opencvref_ml.htm.
- highgui:
* 所有的视频捕捉的代码在结构上都重新构造并且按模块划分,采用了更好的函数名字(原有的函数
名字通过宏仍然支持)。
* 增加了对 Quicktime (MacOSX) 和 Xine (Linux, (注意查看相关的许可)!)) 的支持.
- 捆绑与界面:
* 现在支持 IPP 5.1.*,而这是一个推荐与OPENCV一起使用的版本。用户可以执行建立单独的
IPP DLL 作为二进制版本的分发。见(interfaces/ipp)
* 大大提高并扩展了与 Python 的绑定
(见 interfaces/swig[/python] 以及 samples/python).
>>> 优化: <<<
- 应用新的 IPP5.1 功能,下列的滤波函数都被大大优化:
cvSobel, cvLaplace, cvErode, cvDilate.
- cvFilter2D 对于大的内核运行得更快 (使用基于 DFT 的算法)
- 一些函数可以使用 OPENMP 做并行处理:
cvHaarDetectObjects, cvCalcOpticalFlowPyrLK, cvDistTransform (the new algorithm only),
因此它们的运行速度在双核CPU上要快 ~50-80% , 当代码用 Intel compiler 或者 MSVC2005
编译时。