题目描述
小猪上小学的时候,一度对颜色非常感兴趣,虽然他的美术非常糟糕。有一次他喝完n 瓶饮料把透明的瓶子排成一排, 想把这些饮料瓶子都涂上颜色。他觉得如果所有相邻的两个瓶子颜色都不一样的话会比较有趣。
他现在只有红色(Red) 、绿色(Green) 和蓝色(Blue) 这三种颜料。由于瓶子的大小和表面材质不同,在不同的瓶子上涂不同的颜色需要的花费都不一样。小猪统计了一下,把第i个瓶子染成红色需要Ri元钱,染成绿色需要Gi 元钱,染成蓝色需要Bi 元钱。
现在请你帮他计算出要使相邻两个瓶子的颜色都不一样,他至少需要多少花费。
输入
第一行只有一个整数n ,表示共有n只瓶子。
第二行有n 个正整数(以一个空格分隔) , 第i个数Ri表示把第i个瓶子染成红色需要Ri元钱。
第三行有n 个正整数(以一个空格分隔), 第i个数Gi表示把第i个瓶子染成绿色需要Gi元钱。
第四行有n 个正整数(以一个空格分隔) ,第i个数Bi表示把第i个瓶子染成蓝色需要Bi 元钱。
输出
仅有一行,该行只有一个整数,表示最小花费。
样例输入
5 1 3 1 2 2 1 2 3 4 3 4 2 1 5 3
样例输出
9
提示
【数据规模】
30% 的数据中, 1≤n ≤10 ;
70% 的数据中, 1≤n ≤30 ;
100% 的数据中, 1 ≤n≤100000 ,1≤Ri, Gi, Bi ≤100 。
code
#include<bits/stdc++.h>
using namespace std;
int n,c[100010][3];
int f[100010][3];
int main()
{
cin>>n;
for(int j=0;j<3;j++)
for(int i=1;i<=n;i++)
cin>>c[i][j];
f[1][0]=c[1][0];
f[1][1]=c[1][1];
f[1][2]=c[1][2];
for(int i=2;i<=n;i++){
f[i][0]=c[i][0]+min(f[i-1][1],f[i-1][2]);
f[i][1]=c[i][1]+min(f[i-1][0],f[i-1][2]);
f[i][2]=c[i][2]+min(f[i-1][0],f[i-1][1]);
}
int ans=min(f[n][0],min(f[n][1],f[n][2]));
cout<<ans<<endl;
return 0;
}