题目描述
小来获意外中彩票获得了一大笔钱,他暂时用不上这一笔钱,他决定进行投资以获得更大的效益。银行工作人员向他提供了多种债券,每一种债券都能在固定的投资后,提供稳定的年利息。当然,每一种债券的投资额是不同的,一般来说,投资越大,收益也越大,而且,每一年还可以根据资金总额的增加,更换收益更大的债券。
例如:有如下两种不同的债券:①投资额4000,年利息400;②投资额3000,年利息250。
初始时,有10000的总资产,可以投资两份债券①债券,一年获得800的利息;
而投资一份债券①和两份债券②,一年可获得900的利息,
两年后,可获得1800的利息;而所有的资产达到11800,然后将卖掉一份债券②,换购债券①,年利息可达到1050;
第三年后,总资产达到12850,可以购买三份债券①,年利息可达到1200,
第四年后,总资产可达到$14050。
现给定若干种债券、最初的总资产,帮小来计算,经过n年的投资,总资产的最大值。
输入
第一行为三个正整数s,n,d,分别表示最初的总资产、年数和债券的种类。
接下来d行,每行表示一种债券,两个正整数a,b分别表示债券的投资额和年利息。
输出
仅一个整数,表示n年后的最大总资产
样例输入
10000 4 2 4000 400 3000 250
样例输出
14050
提示
s≤10^6,n≤40,d≤10,a≤10^4,且a是1000的倍数,b不超过a的10%
code
#include<bits/stdc++.h>
using namespace std;
struct zq{
int w,c;
}tz[100];
int s,n,d,h[5000000];
int main()
{
cin>>s>>n>>d;
for(int i=1;i<=d;i++){
cin>>tz[i].w>>tz[i].c;
}
for(int k=1;k<=n;k++){
for(int i=1;i<=d;i++){
for(int j=tz[i].w;j<=s;j++){
h[j]=max(h[j],h[j-tz[i].w]+tz[i].c);
}
}
s=s+h[s];
}
cout<<s;
return 0;
}