题意:给定一个区间[n,m],求n到m中没有“62”和“4”的数的个数。其中例如62548 ,412包含62 和4 所以是不合法的。
思路:设dp[i][j]表示i位数且开头为j的数中不包含“4”和“62"的数的个数,则可以得出dp[i][j]=dp[i][j]+dp[i-1][k],(0=<k<=9),则可以将0000000~9999999的数进行一下预处理。然后对n,m分别从高位开始统计,统计到比n的小的数字,算出[0,m)和[0,n)的合法个数,最后对m进行特殊判断即可,答案即为[0.m)-[0,n),如果m合法则答案加1.
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int f[10][12];
int numn[10];//存储n的第i位的数字是几,从右往左存
int numm[10];//存储m的第i位的数字是几,从右往左存
int lenn;//n的位数
int lenm;//m的位数
int n,m;
void work()//0000000~9999999的预处理
{
memset(f,0,sizeof(f));
f[0][0]=1;
for(int i=1;i<=7;i++)
for(int j=0;j<=9;j++)
for(int k=0;k<=9;k++)
{
if((j!=4)&&(!(j==6&&k==2)))
{
f[i][j]+=f[i-1][k];
}
}
}
void solve(int n,int m)//对n,m进行分离每位上的数字
{
lenn=0,lenm=0;
while(n)
{
numn[++lenn]=n%10;
n/=10;
}
while(m)
{
numm[++lenm]=m%10;
m/=10;
}
}
int check()//判断n是否合法
{
for(int i=lenm;i>0;i--)
{
if(numm[i]==4) return 0;
if((i<lenm)&&(numm[i+1]==6)&&(numm[i]==2)) return 0;
}
return 1;
}
int cal()//计算[n,m]中合法的个数
{
int sum=0;
int res=0;
for(int i=lenn;i>0;i--)
{
for(int j=0;j<numn[i];j++)
{
if(j!=4)
{
if((i<lenn)&&(j==2)&&(numn[i+1]==6)) continue;
sum+=f[i][j];
}
}
if(numn[i]==4)
{
break;
}
if((i<lenn)&&(numn[i+1]==6)&&(numn[i]==2))
{
break;
}
}
for(int i=lenm;i>0;i--)
{
for(int j=0;j<numm[i];j++)
{
if(j!=4)
{
if((i<lenm)&&(j==2)&&(numm[i+1]==6)) continue;
res+=f[i][j];
}
}
if(numm[i]==4)
{
break;
}
if((i<lenm)&&(numm[i+1]==6)&&(numm[i]==2))
{
break;
}
}
return res-sum;
}
int main()
{
// freopen("in.txt","r",stdin);
work();
while(scanf("%d%d",&n,&m),n||m)
{
solve(n,m);
printf("%d\n",cal()+check());
}
return 0;
}