hdu 2089 不要62 (数位DP)

题意:给定一个区间[n,m],求n到m中没有“62”和“4”的数的个数。其中例如62548 ,412包含62 和4 所以是不合法的。

思路:设dp[i][j]表示i位数且开头为j的数中不包含“4”和“62"的数的个数,则可以得出dp[i][j]=dp[i][j]+dp[i-1][k],(0=<k<=9),则可以将0000000~9999999的数进行一下预处理。然后对n,m分别从高位开始统计,统计到比n的小的数字,算出[0,m)和[0,n)的合法个数,最后对m进行特殊判断即可,答案即为[0.m)-[0,n),如果m合法则答案加1.

代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int f[10][12];
int numn[10];//存储n的第i位的数字是几,从右往左存
int numm[10];//存储m的第i位的数字是几,从右往左存
int lenn;//n的位数
int lenm;//m的位数
int n,m;
void work()//0000000~9999999的预处理
{
    memset(f,0,sizeof(f));
    f[0][0]=1;
    for(int i=1;i<=7;i++)
        for(int j=0;j<=9;j++)
            for(int k=0;k<=9;k++)
            {
                if((j!=4)&&(!(j==6&&k==2)))
                {
                     f[i][j]+=f[i-1][k];
                }
            }
}
void solve(int n,int m)//对n,m进行分离每位上的数字
{
    lenn=0,lenm=0;
    while(n)
    {
        numn[++lenn]=n%10;
        n/=10;
    }
    while(m)
    {
        numm[++lenm]=m%10;
        m/=10;
    }
}
int check()//判断n是否合法
{
    for(int i=lenm;i>0;i--)
    {
        if(numm[i]==4) return 0;
        if((i<lenm)&&(numm[i+1]==6)&&(numm[i]==2)) return 0;
    }
    return 1;
}
int cal()//计算[n,m]中合法的个数
{
    int sum=0;
    int res=0;
    for(int i=lenn;i>0;i--)
    {
        for(int j=0;j<numn[i];j++)
        {
            if(j!=4)
            {
               if((i<lenn)&&(j==2)&&(numn[i+1]==6)) continue;
                    sum+=f[i][j];
            }
        }
        if(numn[i]==4)
        {
            break;
        }
        if((i<lenn)&&(numn[i+1]==6)&&(numn[i]==2))
        {
            break;
        }
    }
    for(int i=lenm;i>0;i--)
    {
        for(int j=0;j<numm[i];j++)
        {
            if(j!=4)
            {
                if((i<lenm)&&(j==2)&&(numm[i+1]==6)) continue;
                    res+=f[i][j];
            }
        }
        if(numm[i]==4)
        {
            break;
        }
        if((i<lenm)&&(numm[i+1]==6)&&(numm[i]==2))
        {
            break;
        }
    }
    return res-sum;
}
int main()
{
   // freopen("in.txt","r",stdin);
    work();
    while(scanf("%d%d",&n,&m),n||m)
    {
        solve(n,m);
        printf("%d\n",cal()+check());
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值