0014算法笔记——【动态规划】凸多边形最优三角剖分

 1、问题相关定义:

     (1)凸多边形的三角剖分将凸多边形分割成互不相交的三角形的弦的集合T。

    (2)最优剖分给定凸多边形P,以及定义在由多边形的边和弦组成的三角形上的权函数w。要求确定该凸多边形的三角剖分,使得该三角剖分中诸三角形上权之和为最小。

     凸多边形三角剖分如下图所示:

          2、最优子结构性质

     若凸(n+1)边形P={V0,V1……Vn}的最优三角剖分T包含三角形V0VkVn,1<=k<=n,则T的权为三个部分权之和:三角形V0VkVn的权,多边形{V0,V1……Vk}的权和多边形{Vk,Vk+1……Vn}的权之和。如下图所示:

          可以断言,由T确定的这两个子多边形的三角剖分也是最优的。因为若有{V0,V1……Vk}和{V0,V1……Vk}更小权的三角剖分,将导致T不是最优三角剖分的矛盾。因此,凸多边形的三角剖分问题具有最优子结构性质。

         3、递推关系:

     设t[i][j],1<=i<j<=n为凸多边形{Vi-1,Vi……Vj}的最优三角剖分所对应的权值函数值,即其最优值。最优剖分包含三角形Vi-1VkVj的权,子多边形{Vi-1,Vi……Vk}的权,子多边形{Vk,Vk+1……Vj}的权之和。

      因此,可得递推关系式:

     凸(n+1)边形P的最优权值为t[1][n]。

     

     程序清单如下:

[cpp]  view plain  copy
  1. //3d5 凸多边形最优三角剖分  
  2. #include "stdafx.h"  
  3. #include <iostream>   
  4. using namespace std;   
  5.   
  6. const int N = 7;//凸多边形边数+1  
  7. int weight[][N] = {{0,2,2,3,1,4},{2,0,1,5,2,3},{2,1,0,2,1,4},{3,5,2,0,6,2},{1,2,1,6,0,1},{4,3,4,2,1,0}};//凸多边形的权  
  8.   
  9. int MinWeightTriangulation(int n,int **t,int **s);  
  10. void Traceback(int i,int j,int **s);//构造最优解  
  11. int Weight(int a,int b,int c);//权函数  
  12.   
  13. int main()  
  14. {  
  15.     int **s = new int *[N];    
  16.     int **t = new int *[N];    
  17.     for(int i=0;i<N;i++)      
  18.     {      
  19.         s[i] = new int[N];    
  20.         t[i] = new int[N];    
  21.     }   
  22.   
  23.     cout<<"此多边形的最优三角剖分值为:"<<MinWeightTriangulation(N-1,t,s)<<endl;    
  24.     cout<<"最优三角剖分结构为:"<<endl;    
  25.     Traceback(1,5,s); //s[i][j]记录了Vi-1和Vj构成三角形的第3个顶点的位置  
  26.   
  27.     return 0;  
  28. }  
  29.   
  30. int MinWeightTriangulation(int n,int **t,int **s)  
  31. {  
  32.     for(int i=1; i<=n; i++)  
  33.     {  
  34.         t[i][i] = 0;  
  35.     }  
  36.     for(int r=2; r<=n; r++) //r为当前计算的链长(子问题规模)    
  37.     {  
  38.         for(int i=1; i<=n-r+1; i++)//n-r+1为最后一个r链的前边界    
  39.         {  
  40.             int j = i+r-1;//计算前边界为r,链长为r的链的后边界    
  41.   
  42.             t[i][j] = t[i+1][j] + Weight(i-1,i,j);//将链ij划分为A(i) * ( A[i+1:j] )这里实际上就是k=i  
  43.   
  44.             s[i][j] = i;  
  45.   
  46.             for(int k=i+1; k<j; k++)  
  47.             {  
  48.                 //将链ij划分为( A[i:k] )* (A[k+1:j])     
  49.                 int u = t[i][k] + t[k+1][j] + Weight(i-1,k,j);  
  50.                 if(u<t[i][j])  
  51.                 {  
  52.                     t[i][j] = u;  
  53.                     s[i][j] = k;  
  54.                 }  
  55.             }  
  56.         }  
  57.     }  
  58.     return t[1][N-2];  
  59. }  
  60.   
  61. void Traceback(int i,int j,int **s)  
  62. {  
  63.     if(i==j) return;  
  64.     Traceback(i,s[i][j],s);  
  65.     Traceback(s[i][j]+1,j,s);  
  66.     cout<<"三角剖分顶点:V"<<i-1<<",V"<<j<<",V"<<s[i][j]<<endl;  
  67. }  
  68.   
  69. int Weight(int a,int b,int c)  
  70. {  
  71.      return weight[a][b] + weight[b][c] + weight[a][c];  
  72. }  

     程序输入如下所示:

     运行结果如图:

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是Java实现的动态规划算法,用于凸多边形最优三角剖分: ```java public class Triangulation { public static double minWeightTriangulation(double[] vertices) { int n = vertices.length / 2; double[][] dp = new double[n][n]; for (int len = 2; len < n; len++) { for (int i = 0; i < n - len; i++) { int j = i + len; dp[i][j] = Double.MAX_VALUE; for (int k = i + 1; k < j; k++) { double weight = dp[i][k] + dp[k][j] + triangleArea(vertices, i, k, j); if (weight < dp[i][j]) { dp[i][j] = weight; } } } } return dp[0][n - 1]; } private static double triangleArea(double[] vertices, int i, int j, int k) { double x1 = vertices[2 * i]; double y1 = vertices[2 * i + 1]; double x2 = vertices[2 * j]; double y2 = vertices[2 * j + 1]; double x3 = vertices[2 * k]; double y3 = vertices[2 * k + 1]; return Math.abs((x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) / 2.0); } } ``` 这个算法中,`vertices`数组包含了多边的所有顶点坐标,按照顺序存储,每个顶点有两个坐标值:x和y。`minWeightTriangulation`方法返回最优三角剖分的权重和,即所有三角的面积之和。 算法的核心是一个二维数组`dp`,其中`dp[i][j]`表示从第i个顶点到第j个顶点的最优三角剖分的权重和。通过动态规划的方式,逐步计算出所有子问题的最优解,最终得到全局最优解。 具体来说,算法的外层循环枚举子问题的长度,从2开始,一直到n-1。内层循环枚举子问题的起点i和终点j,计算出所有可能的三角剖分方式,并选择其中权重和最小的一个。这个过程的时间复杂度是O(n^3),可以通过一些优化来降低复杂度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值