机器学习
文章平均质量分 79
Ferris_YU_Q
AI从业者, Web MIS全栈开发(Java + JavaScript)。
展开
-
偏差与方差,欠拟合与过拟合
机器学习的核心在于使用学习算法建立模型,对已建立模型的质量的评价方法和指标不少,本文以准确率(也称为精度)或判定系数(Coefficient of Determination)作为性能指标对模型的偏差与方差、欠拟合与过拟合概念进行探讨。偏差、方差、欠拟合、过拟合均是对模型(学习器)质量的描述,训练集和验证集(测试集)上的准确率或判定系数得分为做出上述判断提供依据。原创 2017-10-01 20:49:09 · 14558 阅读 · 0 评论 -
散布矩阵(scatter_matrix)及相关系数(correlation coefficients)实例分析
在进行机器学习建模之前,需要对数据进行分析,判断各特征(属性,维度)的数据分布及其之间的关系成为十分必要的环节,本文利用Pandas和Numpy的散布矩阵函数及相关系数函数对数据集特征及其关系进行实例分析。原创 2017-11-19 12:01:32 · 28507 阅读 · 3 评论 -
利用Tensorflow构建CNN图像多分类模型及图像参数、数据维度变化情况实例分析
本文以[CIFAR-10](https://www.cs.toronto.edu/~kriz/cifar.html)为数据集,基于Tensorflow介绍了CNN(卷积神经网络)图像分类模型的构建过程,着重分析了在建模过程中卷积层、池化层、扁平化层、全连接层、输出层的运算机理,以及经过运算后图像shape、数据维度等参数的变化情况。原创 2018-05-09 16:37:41 · 16691 阅读 · 3 评论 -
解决 Pytorch RuntimeError: expected type torch.cuda.FloatTensor but got torch.FloatTensor
Pytorch RuntimeError: expected type torch.cuda.FloatTensor but got torch.FloatTensor。解决办法:显式指定Tensor计算用GPU,或者获取输入数据所在GPU序号、指定Tensor也在该GPU中进行计算。原创 2019-07-30 17:53:31 · 9781 阅读 · 0 评论