在MATLAB中,有一个非常有用的函数 reshape
,它可以将一个矩阵重塑为另一个大小不同的新矩阵,但保留其原始数据。
给出一个由二维数组表示的矩阵,以及两个正整数r
和c
,分别表示想要的重构的矩阵的行数和列数。
重构后的矩阵需要将原始矩阵的所有元素以相同的行遍历顺序填充。
如果具有给定参数的reshape
操作是可行且合理的,则输出新的重塑矩阵;否则,输出原始矩阵。
示例 1:
输入: nums = [[1,2], [3,4]] r = 1, c = 4 输出: [[1,2,3,4]] 解释: 行遍历nums的结果是 [1,2,3,4]。新的矩阵是 1 * 4 矩阵, 用之前的元素值一行一行填充新矩阵。
示例 2:
输入: nums = [[1,2], [3,4]] r = 2, c = 4 输出: [[1,2], [3,4]] 解释: 没有办法将 2 * 2 矩阵转化为 2 * 4 矩阵。 所以输出原矩阵。
注意:
- 给定矩阵的宽和高范围在 [1, 100]。
- 给定的 r 和 c 都是正数。
Python是一个有自己想法的语言,思维更灵活多变!!!路漫漫其修远兮!!!
import functools
class Solution:
def matrixReshape(self, nums: 'List[List[int]]', r: 'int', c: 'int') -> 'List[List[int]]':
length = len(nums[0])
#reshape = r*[[0]*c]
reshape = [[0]*c for _ in range(r)]
for i in range(r):
for j in range(c):
n = i * c + j
reshape[i][j] = nums[n // length][n % length]
#本以为结果是这样,[[1], [2], [3], [4]]
#没想到是这样:[[4], [4], [4], [4]]
#原因出现在这里:reshape = r*[[0]*c] 第一个“*”是(浅)拷贝了同一个引用,每个对象指向同一块内容
return reshape
def matrixReshape2(self, nums: 'List[List[int]]', r: 'int', c: 'int') -> 'List[List[int]]':
# python3需要导入 from functools import reduce
#二维转一维
all_nums = functools.reduce(lambda x, y: x + y, nums)
if (r * c > len(all_nums)):
return nums
return [all_nums[i:i + c] for i in range(0, len(all_nums), c)]
def matrixReshape3(self, nums: 'List[List[int]]', r: 'int', c: 'int') -> 'List[List[int]]':
temp = []
#二维转一维
for i in range(len(nums)):
temp.extend(nums[i])
if r * c != len(temp):
return nums
res = []
for i in range(r):
res.append(temp[c * i: c * i + c])
return res
if __name__ == '__main__':
s = Solution()
nums =[[1, 2],[3, 4]]
r = 4
c = 1
print(s.matrixReshape2(nums,r,c))