近似熵、样本熵、模糊熵python实现

关于近似熵、样本熵、模糊熵原理可以参考该文章:模糊熵、样本熵、近似熵都是什么?反映了什么?
近似熵python实现:

import numpy as np
import matplotlib.pyplot as plt


def Approximate_Entropy(x, m, r=0.15):
    """
    近似熵
    m 滑动时窗的长度
    r 阈值系数 取值范围一般为:0.1~0.25
    """
    # 将x转化为数组
    x = np.array(x)
    # 检查x是否为一维数据
    if x.ndim != 1:
        raise ValueError("x的维度不是一维")
    # 计算x的行数是否小于m+1
    if len(x) < m+1:
        raise ValueError("len(x)小于m+1")
    # 将x以m为窗口进行划分
    entropy = 0  # 近似熵
    for temp in range(2):
        X = []
        for i in range(len(x)-m+1-temp):
            X.append(x[i:i+m+temp])
        X = np.array(X)
        # 计算X任意一行数据与所有行数据对应索引数据的差值绝对值的最大值
        D_value = []  # 存储差值
        for i in X:
            sub = []
            for j in X:
                sub.append(max(np.abs(i-j)))
            D_value.append(sub)
        # 计算阈值
        F = r*np.std(x, ddof=1)
        # 判断D_value中的每一行中的值比阈值小的个数除以len(x)-m+1的比例
        num = np.sum(D_value<F, axis=1)/(len(x)-m+1-temp)
        # 计算num的对数平均值
        Lm = np.average(np.log(num))
        entropy = abs(entropy) - Lm

    return entropy

样本熵python实现:

import numpy as np
import matplotlib.pyplot as plt


def Sample_Entropy(x, m, r=0.15):
    """
    样本熵
    m 滑动时窗的长度
    r 阈值系数 取值范围一般为:0.1~0.25
    """
    # 将x转化为数组
    x = np.array(x)
    # 检查x是否为一维数据
    if x.ndim != 1:
        raise ValueError("x的维度不是一维")
    # 计算x的行数是否小于m+1
    if len(x) < m+1:
        raise ValueError("len(x)小于m+1")
    # 将x以m为窗口进行划分
    entropy = 0  # 近似熵
    for temp in range(2):
        X = []
        for i in range(len(x)-m+1-temp):
            X.append(x[i:i+m+temp])
        X = np.array(X)
        # 计算X任意一行数据与所有行数据对应索引数据的差值绝对值的最大值
        D_value = []  # 存储差值
        for index1, i in enumerate(X):
            sub = []
            for index2, j in enumerate(X):
                if index1 != index2:
                    sub.append(max(np.abs(i-j)))
            D_value.append(sub)
        # 计算阈值
        F = r*np.std(x, ddof=1)
        # 判断D_value中的每一行中的值比阈值小的个数除以len(x)-m+1的比例
        num = np.sum(D_value<F, axis=1)/(len(X)-m+1-temp)
        # 计算num的对数平均值
        Lm = np.average(np.log(num))
        entropy = abs(entropy) - Lm

    return entropy

模糊熵python实现:

import numpy as np
import matplotlib.pyplot as plt


def Fuzzy_Entropy(x, m, r=0.25, n=2):
    """
    模糊熵
    m 滑动时窗的长度
    r 阈值系数 取值范围一般为:0.1~0.25
    n 计算模糊隶属度时的维度
    """
    # 将x转化为数组
    x = np.array(x)
    # 检查x是否为一维数据
    if x.ndim != 1:
        raise ValueError("x的维度不是一维")
    # 计算x的行数是否小于m+1
    if len(x) < m+1:
        raise ValueError("len(x)小于m+1")
    # 将x以m为窗口进行划分
    entropy = 0  # 近似熵
    for temp in range(2):
        X = []
        for i in range(len(x)-m+1-temp):
            X.append(x[i:i+m+temp])
        X = np.array(X)
        # 计算X任意一行数据与其他行数据对应索引数据的差值绝对值的最大值
        D_value = []  # 存储差值
        for index1, i in enumerate(X):
            sub = []
            for index2, j in enumerate(X):
                if index1 != index2:
                    sub.append(max(np.abs(i-j)))
            D_value.append(sub)
        # 计算模糊隶属度
        D = np.exp(-np.power(D_value, n)/r)
        # 计算所有隶属度的平均值
        Lm = np.average(D.ravel())
        entropy = abs(entropy) - Lm

    return entropy

小结:近似熵与样本熵对于微弱信号的识别能力不行,比如:原始信号为sin(10t)t<50s,t>50s后如果在原始信号上加上sin(10t)+sin(2t),那么近似熵与样本熵判断都不是很好,而模糊熵能较好的判断。但如果信号特别微弱比如sin(10t)+sin(0.2*t),那么模糊熵也不能较好的判断。

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值