关于近似熵、样本熵、模糊熵原理可以参考该文章:模糊熵、样本熵、近似熵都是什么?反映了什么?
近似熵python实现:
import numpy as np
import matplotlib.pyplot as plt
def Approximate_Entropy(x, m, r=0.15):
"""
近似熵
m 滑动时窗的长度
r 阈值系数 取值范围一般为:0.1~0.25
"""
# 将x转化为数组
x = np.array(x)
# 检查x是否为一维数据
if x.ndim != 1:
raise ValueError("x的维度不是一维")
# 计算x的行数是否小于m+1
if len(x) < m+1:
raise ValueError("len(x)小于m+1")
# 将x以m为窗口进行划分
entropy = 0 # 近似熵
for temp in range(2):
X = []
for i in range(len(x)-m+1-temp):
X.append(x[i:i+m+temp])
X = np.array(X)
# 计算X任意一行数据与所有行数据对应索引数据的差值绝对值的最大值
D_value = [] # 存储差值
for i in X:
sub = []
for j in X:
sub.append(max(np.abs(i-j)))
D_value.append(sub)
# 计算阈值
F = r*np.std(x, ddof=1)
# 判断D_value中的每一行中的值比阈值小的个数除以len(x)-m+1的比例
num = np.sum(D_value<F, axis=1)/(len(x)-m+1-temp)
# 计算num的对数平均值
Lm = np.average(np.log(num))
entropy = abs(entropy) - Lm
return entropy
样本熵python实现:
import numpy as np
import matplotlib.pyplot as plt
def Sample_Entropy(x, m, r=0.15):
"""
样本熵
m 滑动时窗的长度
r 阈值系数 取值范围一般为:0.1~0.25
"""
# 将x转化为数组
x = np.array(x)
# 检查x是否为一维数据
if x.ndim != 1:
raise ValueError("x的维度不是一维")
# 计算x的行数是否小于m+1
if len(x) < m+1:
raise ValueError("len(x)小于m+1")
# 将x以m为窗口进行划分
entropy = 0 # 近似熵
for temp in range(2):
X = []
for i in range(len(x)-m+1-temp):
X.append(x[i:i+m+temp])
X = np.array(X)
# 计算X任意一行数据与所有行数据对应索引数据的差值绝对值的最大值
D_value = [] # 存储差值
for index1, i in enumerate(X):
sub = []
for index2, j in enumerate(X):
if index1 != index2:
sub.append(max(np.abs(i-j)))
D_value.append(sub)
# 计算阈值
F = r*np.std(x, ddof=1)
# 判断D_value中的每一行中的值比阈值小的个数除以len(x)-m+1的比例
num = np.sum(D_value<F, axis=1)/(len(X)-m+1-temp)
# 计算num的对数平均值
Lm = np.average(np.log(num))
entropy = abs(entropy) - Lm
return entropy
模糊熵python实现:
import numpy as np
import matplotlib.pyplot as plt
def Fuzzy_Entropy(x, m, r=0.25, n=2):
"""
模糊熵
m 滑动时窗的长度
r 阈值系数 取值范围一般为:0.1~0.25
n 计算模糊隶属度时的维度
"""
# 将x转化为数组
x = np.array(x)
# 检查x是否为一维数据
if x.ndim != 1:
raise ValueError("x的维度不是一维")
# 计算x的行数是否小于m+1
if len(x) < m+1:
raise ValueError("len(x)小于m+1")
# 将x以m为窗口进行划分
entropy = 0 # 近似熵
for temp in range(2):
X = []
for i in range(len(x)-m+1-temp):
X.append(x[i:i+m+temp])
X = np.array(X)
# 计算X任意一行数据与其他行数据对应索引数据的差值绝对值的最大值
D_value = [] # 存储差值
for index1, i in enumerate(X):
sub = []
for index2, j in enumerate(X):
if index1 != index2:
sub.append(max(np.abs(i-j)))
D_value.append(sub)
# 计算模糊隶属度
D = np.exp(-np.power(D_value, n)/r)
# 计算所有隶属度的平均值
Lm = np.average(D.ravel())
entropy = abs(entropy) - Lm
return entropy
小结:近似熵与样本熵对于微弱信号的识别能力不行,比如:原始信号为sin(10t)t<50s,t>50s后如果在原始信号上加上sin(10t)+sin(2t),那么近似熵与样本熵判断都不是很好,而模糊熵能较好的判断。但如果信号特别微弱比如sin(10t)+sin(0.2*t),那么模糊熵也不能较好的判断。