图像处理
文章平均质量分 92
hustlx
小硕一枚,兴趣人工智能、机器学习、图像处理。
展开
-
双线性插值原理与实现
在对图像进行空间变换的过程中,典型的情况是在对图像进行放大处理的时候,图像会出现失真的现象。这是由于在变换之后的图像中,存在着一些变换之前的图像中没有的像素位置。为了说明这个问题,不妨假设有一副大小为64x64的灰度图像A,现在将图像放大到256x256,不妨令其为图像B,如图1所示。显然,根据简单的几何换算关系,可以知道B图像中(x,y)处的像素值应该对应着A图像中的(x/4,y/4)处的象素值原创 2016-03-05 18:24:16 · 2727 阅读 · 0 评论 -
图像特征提取之(二)LBP特征
图像特征提取之(二)LBP特征 LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理特征; 1、LBP特征的描述转载 2016-06-10 10:28:31 · 942 阅读 · 0 评论 -
图像特征提取之(一)HOG特征
图像特征提取之(一)HOG特征 1、HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HO转载 2016-06-10 10:27:36 · 777 阅读 · 0 评论 -
OpenCV安装:OpenCV 3.1.0 +VS2015 开发环境配置
一、准备工作a、vs2015环境b、从http://opencv.org/downloads.html下载opencv3.1.0二、开始安装a、双击得到如下配置安装路径:b、设置一个路径,点击extract开始安装:三、配置环境变量上述步骤完成之后,需要配置电脑的环境变量:电脑-》属性-》高级系统设置:点击高级系统设置之后如下:原创 2016-03-24 19:22:44 · 12380 阅读 · 5 评论 -
卡车图像分离车头、车厢、车轮
要求对400张卡车图片进行处理,分割出车头、车轮、和车厢,在尝试了以上多种方法失败之后,用了2010年Varun Gulshan等提出的一种Geodesic Star Convexity Sequential system(简称GSCseq)算法[2],该算法很适合于我们感兴趣的区域都在图像中央的这种情况,下图显示了原图像和处理之后保存的结果,绿色表示车头,蓝色表示车厢,红色表示车轮。用红色的原创 2016-03-07 11:16:56 · 3385 阅读 · 0 评论 -
暗通道图像去雾
实验原理在绝大多数非天空的局部区域里,某一些像素总会有至少一个颜色通道有很低的值。换言之,该区域光强度的最小值是个很小的数。 我们给暗通道一个数学定义,对于任意的输入图像J,其暗通道可以用下式表达: 式中Jc表示彩色图像的每个通道 ,Ω(x)表示以像素X为中心的一个窗口。 式(5)的意义用代码表达也很简单,首先求出每个像素RGB分量中的最小原创 2016-03-10 20:27:20 · 3793 阅读 · 0 评论 -
边缘检测与图像分割
1图像分割原理图像分割的研究多年来一直受到人们的高度重视,至今提出了各种类型的分割算法。Pal把图像分割算法分成了6类:阈值分割,像素分割、深度图像分割、彩色图像分割,边缘检测和基于模糊集的方法。但是,该方法中,各个类别的内容是有重叠的。为了涵盖不断涌现的新方法,有的研究者将图像分割算法分为以下六类:并行边界分割技术、串行边界分割技术、并行区域分割技术、串行区域分割技术、结合特定理论工具的分割原创 2016-03-07 11:19:29 · 36332 阅读 · 4 评论 -
提取图像里面的红色灯笼(一)
图像的分割:RGB空间图像的分割:/**************************************************************函数功能:对图像rgb空间红色灯笼的提取输入参数:源图像src;目标图像des;图像参数width,height,nChannels;输出参数:目标图像**************************原创 2016-03-07 11:11:09 · 1580 阅读 · 0 评论 -
提取图像里面的红色灯笼(二)
首先对图像进行简单的阈值处理:123456789101112131415161718192021222324252627282930原创 2016-03-07 11:15:22 · 1672 阅读 · 0 评论 -
图像加噪和图像滤波
1. 椒盐噪声(Salt And Pepper Noise)椒盐噪声是一种因为信号脉冲强度引起的噪声,信噪比(Signal NoiseRate)是衡量图像噪声的一个数字指标。给一副数字图像加上椒盐噪声的处理顺序应该如下:指定信噪比 SNR 其取值范围在[0, 1]之间计算总像素数目 SP,得到要加噪的像素数目 NP = SP * (1-SNR)随机获取要加噪的每个像素位置P原创 2016-03-07 11:06:30 · 3447 阅读 · 0 评论 -
同态滤波
在生活中会得到这样的图像,它的动态范围很大,而我们感兴趣的部分的灰度又很暗,图像细节没有办法辨认,采用一般的灰度级线性变换法是不行的。图像的同态滤波属于图像频率域处理范畴,其作用是对图像灰度范围进行调整,通过消除图像上照明不均的问题,增强暗区的图像细节,同时又不损失亮区的图像细节. 我们人眼能分别得出图像的灰度不仅仅是由于光照函数(照射分量)决定,而且还与反射函数(反射分量)有关,反射函数反映出图原创 2016-03-07 11:04:40 · 6605 阅读 · 2 评论 -
直方图均衡化原理与实现
直方图均衡化(Histogram Equalization) 又称直方图平坦化,实质上是对图像进行非线性拉伸,重新分配图像象元值,使一定灰度范围内象元值的数量大致相等。这样,原来直方图中间的峰顶部分对比度得到增强,而两侧的谷底部分对比度降低,输出图像的直方图是一个较平的分段直方图:如果输出数据分段值较小的话,会产生粗略分类的视觉效果。 直方图是表示数字图像中每一灰度出现频率的统计关系。直原创 2016-03-07 11:00:13 · 2317 阅读 · 0 评论 -
图像旋转的原理与实现
一般图像的旋转是以图像的中心为原点,旋转一定的角度,也就是将图像上的所有像素都旋转一个相同的角度。旋转后图像的的大小一般会改变,即可以把转出显示区域的图像截去,或者扩大图像范围来显示所有的图像。图像的旋转变换也可以用矩阵变换来表示。设点逆时针旋转角后的对应点为。那么,旋转前后点、的坐标分别是: (3-6) (3-7) 写成矩阵原创 2016-03-05 18:25:59 · 3003 阅读 · 0 评论 -
划重点
机器学习:几种范数的区别、一范数的稀疏批量、随机梯度下降PCA主成分分析支持向量机推倒精确度、召回率和F1、ROC曲线、AUC神经网络推倒朴素贝叶斯推倒逻辑回归 (重点)推倒 频率学派和贝叶斯学派生成方法和判别方法ID3/C4.5/CART 决策树熵、互信息、KL散度过拟合、正则化偏差和方差感知机推倒k-means聚类推倒KKT条原创 2017-02-22 19:16:13 · 1217 阅读 · 0 评论