题目链接:http://poj.org/problem?id=3469
题意简述:有n种模式,每种模式在在核A与核B上所花费的时间不同,如果两个有数据交换的模式在不同的两个核上执行,那么需要额外的花费,题目求最小的花费使得所有的模式都能够被执行!
分析: 显然这里有两个核,很容易想到最小割来解决此题,但是如何建图才是正确的呢??
建图方法:源点s和每个模式相连且权值为在A核上运行的花费,该点和汇点t相连且权值为该模式在B核上运行的花费,那么两个有数据交换的模式的两个点连双向边,权值为额外的花费! 这样建图后求最小割即为答案! 为什么呢?因为这样建图后一个模式与A连接或者与B连接的其中一条边一定在割边中,若两个有数据交换的模式的割边分别连接了源点和汇点,那么他们之间额外的费用边也一定在割集中(画画图就好理解了),所以这样建图求最小割即为所求结果
代码:
题意简述:有n种模式,每种模式在在核A与核B上所花费的时间不同,如果两个有数据交换的模式在不同的两个核上执行,那么需要额外的花费,题目求最小的花费使得所有的模式都能够被执行!
分析: 显然这里有两个核,很容易想到最小割来解决此题,但是如何建图才是正确的呢??
建图方法:源点s和每个模式相连且权值为在A核上运行的花费,该点和汇点t相连且权值为该模式在B核上运行的花费,那么两个有数据交换的模式的两个点连双向边,权值为额外的花费! 这样建图后求最小割即为答案! 为什么呢?因为这样建图后一个模式与A连接或者与B连接的其中一条边一定在割边中,若两个有数据交换的模式的割边分别连接了源点和汇点,那么他们之间额外的费用边也一定在割集中(画画图就好理解了),所以这样建图求最小割即为所求结果
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int inf=0x3fffffff;
const int N = 20010;
const int E = 900000;
struct node
{
int x,y,nxt,c;
}edge[E];
int e,head[N];
int dep[N],que[N],cur[N];
void addedge(int u,int v,int c)
{
edge[e].x=u;
edge[e].y=v;
edge[e].nxt=head[u];
edge[e].c=c;
head[u]=e++;
edge[e].x=v;
edge[e].y=u;
edge[e].nxt=head[v];
edge[e].c=0;
head[v]=e++;
}
int maxflow(int s,int t)
{
int i,j,k,front,rear,top,min,res=0;
while(1)
{
memset(dep,-1,sizeof(dep));
front=0;
rear=0;
que[rear++]=s;
dep[s]=0;
while(front!=rear)
{
i=que[front++];
for(j=head[i];j!=-1;j=edge[j].nxt)
if(edge[j].c&&dep[edge[j].y]==-1)
{
dep[edge[j].y]=dep[i]+1;
que[rear++]=edge[j].y;
}
}
if(dep[t]==-1)
break;
memcpy(cur,head,sizeof(head));
for(i=s,top=0;;)
{
if(i==t)
{
min=inf;
for(k=0;k<top;k++)
if(min>edge[que[k]].c)
{
min=edge[que[k]].c;
front=k;
}
for(k=0;k<top;k++)
{
edge[que[k]].c-=min;
edge[que[k]^1].c+=min;
}
res+=min;
i=edge[que[top=front]].x;
}
for(j=cur[i];cur[i]!=-1;j=cur[i]=edge[cur[i]].nxt)
if(dep[edge[j].y]==dep[i]+1&&edge[j].c)
break;
if(cur[i]!=-1)
{
que[top++]=cur[i];
i=edge[cur[i]].y;
}
else
{
if(top==0)
break;
dep[i]=-1;
i=edge[que[--top]].x;
}
}
}
return res;
}
int main ()
{
int n,m;
int i,w,c, x,y;
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(head,-1,sizeof(head));
e = 0;
for(i=0;i<n;i++)
{
scanf("%d%d",&w,&c);
addedge(0,i+1,w);
addedge(i+1,n+1,c);
}
for(i=0;i<m;i++)
{
scanf("%d%d%d",&x,&y,&w);
addedge(x,y,w);
addedge(y,x,w);
}
printf("%d\n",maxflow(0,n+1));
}
return 0;
}