poj 2469(Dual Core CPU)

题目链接:http://poj.org/problem?id=3469


题意简述:有n种模式,每种模式在在核A与核B上所花费的时间不同,如果两个有数据交换的模式在不同的两个核上执行,那么需要额外的花费,题目求最小的花费使得所有的模式都能够被执行!


分析: 显然这里有两个核,很容易想到最小割来解决此题,但是如何建图才是正确的呢??
建图方法:源点s和每个模式相连且权值为在A核上运行的花费,该点和汇点t相连且权值为该模式在B核上运行的花费,那么两个有数据交换的模式的两个点连双向边,权值为额外的花费! 这样建图后求最小割即为答案! 为什么呢?因为这样建图后一个模式与A连接或者与B连接的其中一条边一定在割边中,若两个有数据交换的模式的割边分别连接了源点和汇点,那么他们之间额外的费用边也一定在割集中(画画图就好理解了),所以这样建图求最小割即为所求结果




代码:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;


const int inf=0x3fffffff;
const int N = 20010;
const int E = 900000;
struct node
{
	int x,y,nxt,c;
}edge[E];


int e,head[N];
int dep[N],que[N],cur[N];
void addedge(int u,int v,int c)
{
	edge[e].x=u;
	edge[e].y=v;
	edge[e].nxt=head[u];
	edge[e].c=c;
	head[u]=e++;


	edge[e].x=v;
	edge[e].y=u;
	edge[e].nxt=head[v];
	edge[e].c=0;
	head[v]=e++;
}


int maxflow(int s,int t)
{
	int i,j,k,front,rear,top,min,res=0;
	while(1)
	{
		memset(dep,-1,sizeof(dep));
		front=0;
		rear=0;
		que[rear++]=s;
		dep[s]=0;
		while(front!=rear)
		{
			i=que[front++];
			for(j=head[i];j!=-1;j=edge[j].nxt)
				if(edge[j].c&&dep[edge[j].y]==-1)
				{
					dep[edge[j].y]=dep[i]+1;
					que[rear++]=edge[j].y;
				
				}
		}
		if(dep[t]==-1)
			break;
		memcpy(cur,head,sizeof(head)); 
		for(i=s,top=0;;)
		{
			if(i==t)
			{
				min=inf;
				for(k=0;k<top;k++)
					if(min>edge[que[k]].c)
					{
						min=edge[que[k]].c;
						front=k;
					}
				for(k=0;k<top;k++)
				{
					edge[que[k]].c-=min;
					edge[que[k]^1].c+=min;
				}
				res+=min;
				i=edge[que[top=front]].x;
				
			}
			for(j=cur[i];cur[i]!=-1;j=cur[i]=edge[cur[i]].nxt)
				if(dep[edge[j].y]==dep[i]+1&&edge[j].c)
					break;
			if(cur[i]!=-1)
			{
				que[top++]=cur[i];
				i=edge[cur[i]].y;
			}
			else
			{
				if(top==0)
					break;
				dep[i]=-1;
				i=edge[que[--top]].x;
			}
		}
	}
	return res;
}
int main ()
{
	int n,m;
	int i,w,c, x,y;
	while(scanf("%d%d",&n,&m)!=EOF)
	{
		memset(head,-1,sizeof(head));
		e = 0;
		for(i=0;i<n;i++)
		{
			scanf("%d%d",&w,&c);
			addedge(0,i+1,w);
			addedge(i+1,n+1,c);
		}


		for(i=0;i<m;i++)
		{
			scanf("%d%d%d",&x,&y,&w);
			addedge(x,y,w);
			addedge(y,x,w);
		}
		printf("%d\n",maxflow(0,n+1));
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值